Stepanov-like almost automorphic functions and monotone evolution equations

被引:105
作者
N'Guerekata, Gaston M. [1 ]
Pankov, Alexander [2 ]
机构
[1] Morgan State Univ, Dept Math, Baltimore, MD 21251 USA
[2] Coll William & Mary, Dept Math, Williamsburg, VA 23187 USA
关键词
almost automorphic; parabolic equations; monotone operators;
D O I
10.1016/j.na.2007.02.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we are concerned with a (new) class of (Stepanov-like) almost automorphic (S-p-a.a.) functions with values in a Banach space X. This class contains the space AA(X) of all (Bochner) almost automorphic functions. We use the results obtained to prove the existence and uniqueness of a weak S-p-a.a. solution to the parabolic equation u'(t) + A(t)u = f (t) in a reflexive Banach space, assuming some appropriate conditions of monotonicity, coercitivity of the operators A(t) and S-p'-almost automorphy of the forced term f (t). This result extends a known result in the case of almost periodicity. An application is also given. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2658 / 2667
页数:10
相关论文
共 25 条
[1]  
[Anonymous], 2001, ALMOST AUTOMORPHIC A
[2]  
[Anonymous], 1997, MATH SURVEYS MONOGRA, DOI DOI 10.1090/SURV/049
[3]  
[Anonymous], 1974, Ann. Mat. Pura Appl
[5]   On compact solutions of operational-differential equations. I [J].
Bochner, S ;
von Neumann, J .
ANNALS OF MATHEMATICS, 1935, 36 :255-291
[8]  
Casarino V., 2000, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl., V24, P219
[9]   Almost automorphic functions in Frechet spaces and applications to differential equations [J].
Gal, CS ;
Gal, SG ;
N'Guérékata, GM .
SEMIGROUP FORUM, 2005, 71 (02) :201-230
[10]   Almost automorphic solutions of semilinear evolution equations [J].
Goldstein, JA ;
Guérékata, GM .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (08) :2401-2408