A Clutter-Agnostic Generalized Labeled Multi-Bernoulli Filter

被引:0
作者
Mahler, Ronald [1 ]
机构
[1] Random Sets LLC, Eagan, MN 55121 USA
来源
SIGNAL PROCESSING, SENSOR/INFORMATION FUSION, AND TARGET RECOGNITION XXVII | 2018年 / 10646卷
关键词
Multitarget tracking; clutter rejection; GLMB filter; random finite set; RANDOM FINITE SETS;
D O I
10.1117/12.2305464
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The labeled random finite set (LRFS) theory of B.-T. Vo and B.-N. Vo is the first systematic, theoretically rigorous formulation of true multitarget tracking, and is the basis for the generalized labeled multi-Bernoulli (GLMB) filter (the first implementable and provably Bayes-optimal multitarget tracking algorithm). Like most multitarget trackers, the GLMB filter is based on the assumption that clutter statistics are known a priori. Recent research has introduced RFS filters that are "clutter-agnostic," in the sense that they can address unknown, dynamically evolving clutter. These filters were unlabeled, however. In this paper we devise a clutter-agnostic GLMB (CA-GLMB) filter, based on the Bernoulli clutter-generator concept.
引用
收藏
页数:12
相关论文
共 27 条
[1]  
[Anonymous], 2013, Mathematics of Data Fusion
[2]  
[Anonymous], 2013, PARTICLE FILTERS RAN
[3]  
[Anonymous], P SPIE
[4]   An Efficient Implementation of the Generalized Labeled Multi-Bernoulli Filter [J].
Ba-Ngu Vo ;
Ba-Tuong Vo ;
Hung Gia Hoang .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (08) :1975-1987
[5]   Labeled Random Finite Sets and the Bayes Multi-Target Tracking Filter [J].
Ba-Ngu Vo ;
Ba-Tuong Vo ;
Dinh Phung .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (24) :6554-6567
[6]   Labeled Random Finite Sets and Multi-Object Conjugate Priors [J].
Ba-Tuong Vo ;
Ba-Ngu Vo .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2013, 61 (13) :3460-3475
[7]  
Du Yong Kim, 2013, 2013 International Conference on Control, Automation and Information Sciences (ICCAIS), P91, DOI 10.1109/ICCAIS.2013.6720536
[8]  
Mahler, 2017, MEASUREMENT TO TRACK
[9]  
Mahler R, 2017, P SPIE
[10]  
Mahler R., 2008, HDB MULTISENSOR DATA