Multilingual Offensive Language Identification for Low-resource Languages

被引:17
|
作者
Ranasinghe, Tharindu [1 ]
Zampieri, Marcos [2 ]
机构
[1] Univ Wolverhampton, Res Grp Computat Linguist, Res Inst Informat & Language Proc, MC135,Wulfruna St, Wolverhampton WV1 1LY, England
[2] Rochester Inst Technol, Language Technol Grp, 92 Lomb Mem Dr, Rochester, NY 14620 USA
关键词
Offensive language identification; cross-lingual embeddings; low-resource languages; HATE SPEECH;
D O I
10.1145/3457610
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Offensive content is pervasive in social media and a reason for concern to companies and government organizations. Several studies have been recently published investigating methods to detect the various forms of such content (e.g., hate speech, cyberbullying, and cyberaggression). The clear majority of these studies deal with English partially because most annotated datasets available contain English data. In this article, we take advantage of available English datasets by applying cross-lingual contextual word embeddings and transfer learning to make predictions in low-resource languages. We project predictions on comparable data in Arabic, Bengali, Danish, Greek, Hindi, Spanish, and Turkish. We report results of 0.8415 F1 macro for Bengali in TRAC-2 shared task [23], 0.8532 F1 macro for Danish and 0.8701 F1 macro for Greek in OffensEval 2020 [58], 0.8568 F1 macro for Hindi in HASOC 2019 shared task [27], and 0.7513 F1 macro for Spanish in in SemEval-2019 Task 5 (HatEval) [7], showing that our approach compares favorably to the best systems submitted to recent shared tasks on these three languages. Additionally, we report competitive performance on Arabic and Turkish using the training and development sets of OffensEval 2020 shared task. The results for all languages confirm the robustness of cross-lingual contextual embeddings and transfer learning for this task.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] GlotLID: Language Identification for Low-Resource Languages
    Kargaran, Amir Hossein
    Imani, Ayyoob
    Yvon, Francois
    Schuetze, Hinrich
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS - EMNLP 2023, 2023, : 6155 - 6218
  • [2] Multilingual Speech Corpus in Low-Resource Eastern and Northeastern Indian Languages for Speaker and Language Identification
    Joyanta Basu
    Soma Khan
    Rajib Roy
    Tapan Kumar Basu
    Swanirbhar Majumder
    Circuits, Systems, and Signal Processing, 2021, 40 : 4986 - 5013
  • [3] Multilingual Speech Corpus in Low-Resource Eastern and Northeastern Indian Languages for Speaker and Language Identification
    Basu, Joyanta
    Khan, Soma
    Roy, Rajib
    Basu, Tapan Kumar
    Majumder, Swanirbhar
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2021, 40 (10) : 4986 - 5013
  • [4] Extending Multilingual BERT to Low-Resource Languages
    Wang, Zihan
    Karthikeyan, K.
    Mayhew, Stephen
    Roth, Dan
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, EMNLP 2020, 2020, : 2649 - 2656
  • [5] An Evaluation of Multilingual Offensive Language Identification Methods for the Languages of India
    Ranasinghe, Tharindu
    Zampieri, Marcos
    INFORMATION, 2021, 12 (08)
  • [6] Cross-lingual offensive speech identification with transfer learning for low-resource languages
    Shi, Xiayang
    Liu, Xinyi
    Xu, Chun
    Huang, Yuanyuan
    Chen, Fang
    Zhu, Shaolin
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 101
  • [7] Optimizing Multilingual Sentiment Analysis in Low-Resource Languages with Adaptive Pretraining and Strategic Language Selection
    Raychawdhary, Nilanjana
    Das, Amit
    Bhattacharya, Sutanu
    Dozier, Gerry
    Seals, Cheryl D.
    2024 IEEE 3RD INTERNATIONAL CONFERENCE ON COMPUTING AND MACHINE INTELLIGENCE, ICMI 2024, 2024,
  • [8] A neural approach for inducing multilingual resources and natural language processing tools for low-resource languages
    Zennaki, O.
    Semmar, N.
    Besacier, L.
    NATURAL LANGUAGE ENGINEERING, 2019, 25 (01) : 43 - 67
  • [9] A Study on Low-resource Language Identification
    Qi, Zhaodi
    Ma, Yong
    Gu, Mingliang
    2019 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2019, : 1897 - 1902
  • [10] An Analysis of Massively Multilingual Neural Machine Translation for Low-Resource Languages
    Mueller, Aaron
    Nicolai, Garrett
    McCarthy, Arya D.
    Lewis, Dylan
    Wu, Winston
    Yarowsky, David
    PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION (LREC 2020), 2020, : 3710 - 3718