Thermal Rectification in Asymmetric Graphene/Hexagonal Boron Nitride van der Waals Heterostructures

被引:69
作者
Chen, Xue-Kun [1 ]
Pang, Min [1 ]
Chen, Tong [3 ]
Du, Dan [1 ]
Chen, Ke-Qiu [2 ]
机构
[1] Univ South China, Sch Math & Phys, Hengyang 421001, Peoples R China
[2] Hunan Univ, Sch Phys & Elect, Dept Appl Phys, Changsha 410082, Hunan, Peoples R China
[3] Jiangxi Univ Sci & Technol, Sch Energy & Mech Engn, Nanchang 330013, Jiangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
thermal rectification; vdW heterostructure; asymmetry; phonon mismatch; molecular dynamics; GRAPHENE; TRANSPORT; SPIN; CONDUCTANCE; INTERFACES; DEFECTS;
D O I
10.1021/acsami.9b22498
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Graphene/hexagonal boron nitride (h-BN) heterostructures assembled by van der Waals (vdW) interactions show numerous unique physical properties such as quantum Hall effects and exotic correlated states, which have promising potential applications in the design of novel electronic devices. Understanding thermal transport in such junctions is critical to control the performance and stability of prospective nanodevices. In this work, using nonequilibrium molecular dynamics simulations, we systematically investigate the thermal transport in asymmetric graphene/h-BN vdW heterostructures. It is found that the heat prefers to flow from the monolayer to the multilayer regions, resulting in a significant thermal rectification (TR) effect. To determine the optimum conditions for TR, the influences of sample length, defect density, asymmetric degree, ambient temperature, and vdW interaction strength are studied. Particularly, we found that the TR ratio could be improved by about 1 order of magnitude via increasing the coupling strength from 1 to 10, which clearly distinguishes from the commonly held notion that the TR ratio is practically insensitive or even decreasing with the interaction strength. Detailed spectral analysis reveals that this unexpected increase of the TR ratio can be attributed to heavily modified phonon properties of encased graphene due to enhanced interlayer coupling. Our results elucidate the importance of vdW interactions to heat conduction in nanostructures.
引用
收藏
页码:15517 / 15526
页数:10
相关论文
共 69 条
[1]   Thermal rectification in Y-junction carbon nanotube bundle [J].
Aiyiti, Adili ;
Zhang, Zhongwei ;
Chen, Bensong ;
Hu, Shiqian ;
Chen, Jie ;
Xu, Xiangfan ;
Li, Baowen .
CARBON, 2018, 140 :673-679
[2]   ANOMALOUS BOND OF MONOLAYER GRAPHITE ON TRANSITION-METAL CARBIDE SURFACES [J].
AIZAWA, T ;
SOUDA, R ;
OTANI, S ;
ISHIZAWA, Y ;
OSHIMA, C .
PHYSICAL REVIEW LETTERS, 1990, 64 (07) :768-771
[3]   Phonon dynamics of graphene on metals [J].
Al Taleb, Amjad ;
Far-As, Daniel .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2016, 28 (10)
[4]  
[Anonymous], 2011, PHYS REV B
[5]   Solid-state thermal rectifier [J].
Chang, C. W. ;
Okawa, D. ;
Majumdar, A. ;
Zettl, A. .
SCIENCE, 2006, 314 (5802) :1121-1124
[6]   Thermal interface conductance across a graphene/hexagonal boron nitride heterojunction [J].
Chen, Chun-Chung ;
Li, Zhen ;
Shi, Li ;
Cronin, Stephen B. .
APPLIED PHYSICS LETTERS, 2014, 104 (08)
[7]   Characteristics of electronic and spin-independent linear conductance in conjugated aromatic polymer based molecular device [J].
Chen, Tong ;
Li, Quan ;
Xu, Liang ;
Zhang, Yao ;
Xu, Zhonghui ;
Zhang, Yingbin ;
Wang, Lingling ;
Long, Mengqiu .
ORGANIC ELECTRONICS, 2019, 65 :49-55
[8]   Thermal transport of carbon nanomaterials [J].
Chen, Xue-Kun ;
Chen, Ke-Qiu .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2020, 32 (15)
[9]   Highly efficient thermal rectification in carbon/boron nitride heteronanotubes [J].
Chen, Xue-Kun ;
Xie, Zhong-Xiang ;
Zhang, Yong ;
Deng, Yuan-Xiang ;
Zou, Tong-Hua ;
Liu, Jun ;
Chen, Ke-Qiu .
CARBON, 2019, 148 (532-539) :532-539
[10]   A local resonance mechanism for thermal rectification in pristine/branched graphene nanoribbon junctions [J].
Chen, Xue-Kun ;
Liu, Jun ;
Xie, Zhong-Xiang ;
Zhang, Yong ;
Deng, Yuan-Xiang ;
Chen, Ke-Qiu .
APPLIED PHYSICS LETTERS, 2018, 113 (12)