Applications of q-difference symmetric operator in harmonic univalent functions

被引:15
作者
Zhang, Caihuan [1 ]
Khan, Shahid [2 ]
Hussain, Aftab [3 ]
Khan, Nazar [4 ]
Hussain, Saqib [5 ]
Khan, Nasir [6 ]
机构
[1] Luoyang Normal Univ, Dept Math, Luoyang, Henan, Peoples R China
[2] Balochistan Univ Engn & Technol BUET, Dept Basic Sci, Khuzdar 89100, Pakistan
[3] King Abdulaz Univ, Dept Math, POB 80203, Jeddah 21589, Saudi Arabia
[4] Abbottabad Univ Sci & Technol, Dept Math, Abbottabad 22010, Pakistan
[5] COMSATS Inst Informat Technol, Dept Math, Abbottabad 22060, Pakistan
[6] FATA Univ, Dept Math, Akhorwal Darra Adam Khel 26000, Fr Kohat, Pakistan
来源
AIMS MATHEMATICS | 2022年 / 7卷 / 01期
关键词
univalent functions; harmonic functions; symmetric q-derivative operator; symmetric Salagean q-differential operator; Q-STARLIKE FUNCTIONS; CONVEX-FUNCTIONS; Q-ANALOG; SUBCLASS;
D O I
10.3934/math.2022042
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, for the first time, we apply symmetric q-calculus operator theory to define symmetric Salagean q-differential operator. We introduce a new class (H) over tilde (m)(q)(alpha) of harmonic univalent functions f associated with newly defined symmetric Salagean q-differential operator for complex harmonic functions. A sufficient coefficient condition for the functions f to be sense preserving and univalent and in the same class is obtained. It is proved that this coefficient condition is necessary for the functions in its subclass <(<(H)(m)(q)(alpha)over tilde>)over bar> and obtain sharp coefficient bounds, distortion theorems and covering results. Furthermore, we also highlight some known consequence of our main results.
引用
收藏
页码:667 / 680
页数:14
相关论文
共 39 条
[1]   THE QUANTUM GROUP SUQ(2) AND A Q-ANALOGUE OF THE BOSON OPERATORS [J].
BIEDENHARN, LC .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (18) :L873-L878
[2]   ON SOME SYMMETRIC q-SPECIAL FUNCTIONS [J].
Brahim, Kamel ;
Sidomou, Yosr .
MATEMATICHE, 2013, 68 (02) :107-122
[3]   The q-symmetric variational calculus [J].
Brito da Cruz, Artur M. C. ;
Martins, Natalia .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 64 (07) :2241-2250
[4]  
CLUNIE J, 1984, ANN ACAD SCI FENN-M, V9, P3
[5]  
Duren P., 2004, HARMONIC MAPPINGS PL, DOI [10.1017/CBO9780511546600, DOI 10.1017/CBO9780511546600]
[6]  
HENGARTNER W, 1987, T AM MATH SOC, V299, P1
[7]  
Ismail M.E.H., 1990, Complex Var, V14, P77, DOI DOI 10.1080/17476939008814407
[8]  
Jackson FH., 1909, Earth Environ. Sci. Trans. R. Soc. Edinb, V46, P253, DOI [DOI 10.1017/S0080456800002751, 10.1017/S0080456800002751]
[9]  
Jahangiri J.M., 2018, J. Math. Anal. And Appl, V5, P39
[10]  
Jahangiri J.M., 2002, Southwest J. Pure Appl. Math, V2, P77