Seismically generated tsunamis

被引:29
作者
Arcas, Diego [2 ,3 ]
Segur, Harvey [1 ]
机构
[1] Univ Colorado, Dept Appl Math, Boulder, CO 80309 USA
[2] NOAA, Ctr Tsunami Res, Pacific Marine Environm Lab, Seattle, WA 98115 USA
[3] Univ Washington, Joint Inst Study Atmosphere & Ocean, Seattle, WA 98195 USA
来源
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2012年 / 370卷 / 1964期
基金
美国国家科学基金会;
关键词
nonlinear water waves; dynamics of tsunamis; tsunami forecasting; tsunami hazard mitigation; KORTEWEG-DEVRIES EQUATION; WATER-WAVE PROBLEM; SOBOLEV SPACES; WELL-POSEDNESS; PROPAGATION; EARTHQUAKE; OCEAN; MODEL;
D O I
10.1098/rsta.2011.0457
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
People around the world know more about tsunamis than they did 10 years ago, primarily because of two events: a tsunami on 26 December 2004 that killed more than 200 000 people around the shores of the Indian Ocean; and an earthquake and tsunami off the coast of Japan on 11 March 2011 that killed nearly 15 000 more and triggered a nuclear accident, with consequences that are still unfolding. This paper has three objectives: (i) to summarize our current knowledge of the dynamics of tsunamis; (ii) to describe how that knowledge is now being used to forecast tsunamis; and (iii) to suggest some policy changes that might protect people better from the dangers of future tsunamis.
引用
收藏
页码:1505 / 1542
页数:38
相关论文
共 58 条
[1]  
Ablowitz M., 1981, SOLITONS INVERSE SCA, DOI [10.1137/1.9781611970883, DOI 10.1137/1.9781611970883]
[2]  
Alabaster J, 2011, TSUNAMI HIT TOWNS FO
[3]  
ALVAREZSAMANIEG.B, 2009, INVENT MATH, V171, P165
[4]  
Anon, 2005, DAILY TELEGRAPH 0101
[5]  
[Anonymous], 2008, PMEL143 NOAA OAR
[6]   Evaluation of velocity-related approximations in the nonlinear shallow water equations for the Kuril Islands, 2006 tsunami event at Honolulu, Hawaii [J].
Arcas, Diego ;
Wei, Yong .
GEOPHYSICAL RESEARCH LETTERS, 2011, 38
[7]   MODEL EQUATIONS FOR LONG WAVES IN NONLINEAR DISPERSIVE SYSTEMS [J].
BENJAMIN, TB ;
BONA, JL ;
MAHONY, JJ .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1972, 272 (1220) :47-+
[8]  
Boussinesq J., 1872, Journal de Mathematiques Pures et Appliquees, V17, P55
[9]   Diffusion and dispersion characterization of a numerical tsunami model [J].
Burwell, David ;
Tolkova, Elena ;
Chawla, Arun .
OCEAN MODELLING, 2007, 19 (1-2) :10-30
[10]   The kinematics and stability of solitary and cnoidal wave solutions of the Serre equations [J].
Carter, John D. ;
Cienfuegos, Rodrigo .
EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2011, 30 (03) :259-268