A High-Rate Aqueous Proton Battery Delivering Power Below-78 °C via an Unfrozen Phosphoric Acid

被引:193
作者
Jiang, Heng [1 ]
Shin, Woochul [1 ]
Ma, Lu [3 ]
Hong, Jessica J. [1 ]
Wei, Zhixuan [1 ]
Liu, Yusung [1 ]
Zhang, Suoying [3 ]
Wu, Xianyong [1 ]
Xu, Yunkai [1 ]
Guo, Qiubo [1 ]
Subramanian, Mas A. [1 ]
Stickle, William F. [4 ]
Wu, Tianpin [3 ]
Lu, Jun [2 ]
Ji, Xiulei [1 ]
机构
[1] Oregon State Univ, Dept Chem, Gilbert Hall 153, Corvallis, OR 97331 USA
[2] Argonne Natl Lab, Chem Sci & Engn Div, 9700 South,Cass Ave, Lemont, IL 60439 USA
[3] Argonne Natl Lab, Xray Sci Div, Adv Photon Sources, 9700 South,Cass Ave, Lemont, IL 60439 USA
[4] Hewlett Packard Corp, 1000 NE Circle Blvd, Corvallis, OR 97330 USA
基金
美国国家科学基金会;
关键词
aqueous electrolytes; batteries; low temperature; phosphoric acid; protons; TIO2; ANATASE; ION BATTERY; METAL-OXIDE; ELECTROLYTES; ELECTRODES; ALPHA-MOO3; DIFFUSION; SURFACES; FIBERS;
D O I
10.1002/aenm.202000968
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The sluggish ion diffusion and electrolyte freezing with volumetric changes limit the low-temperature performance of rechargeable batteries. Herein, a high-rate aqueous proton battery (APB) operated at and below -78 degrees C via a 62 wt% (9.5 m) H3PO4 electrolyte is reported. The APB is a rocking-chair battery that operates with protons commuting between a Prussian blue cathode and an MoO3 anode. At -78 degrees C, the APB full cells exhibit stable cycle life for 450 cycles, high round-trip efficiency of 85%, and appreciable power performance. The APB delivers 30% of its room-temperature capacity even at -88 degrees C. The proton storage mechanism is investigated by ex situ synchrotron XRD, XAS, and XPS. The APB pouch cells demonstrate no capacity fading at -78 degrees C, and thus offers a safe and reliable candidate for high-latitude applications.
引用
收藏
页数:8
相关论文
共 47 条
[1]   Nonprecious metal's graphene-supported electrocatalysts for hydrogen evolution reaction: Fundamentals to applications [J].
Ali, Asad ;
Shen, Pei Kang .
CARBON ENERGY, 2020, 2 (01) :99-121
[2]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[3]   Metal oxide surfaces and their interactions with aqueous solutions and microbial organisms [J].
Brown, GE ;
Henrich, VE ;
Casey, WH ;
Clark, DL ;
Eggleston, C ;
Felmy, A ;
Goodman, DW ;
Grätzel, M ;
Maciel, G ;
McCarthy, MI ;
Nealson, KH ;
Sverjensky, DA ;
Toney, MF ;
Zachara, JM .
CHEMICAL REVIEWS, 1999, 99 (01) :77-174
[4]   EFFECT OF PHOSPHORIC-ACID ON POSITIVE ELECTRODE IN LEAD ACID BATTERY [J].
BULLOCK, KR ;
MCCLELLAND, DH .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1977, 124 (10) :1478-1482
[5]   MEASUREMENT OF INTERFACIAL PROCESSES AT ELECTRODE SURFACES WITH THE ELECTROCHEMICAL QUARTZ CRYSTAL MICROBALANCE [J].
BUTTRY, DA ;
WARD, MD .
CHEMICAL REVIEWS, 1992, 92 (06) :1355-1379
[6]   Symmetric cell approach and impedance spectroscopy of high power lithium-ion batteries [J].
Chen, CH ;
Liu, J ;
Amine, K .
JOURNAL OF POWER SOURCES, 2001, 96 (02) :321-328
[7]   Heat capacity and glass transition in P2O5-H2O solutions: support for Mishima's conjecture on solvent water at low temperature [J].
Corti, Horacio R. ;
Nores-Pondal, Federico J. ;
Angell, C. Austen .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (44) :19741-19748
[8]   Organic Batteries Operated at -70°C [J].
Dong, Xiaoli ;
Guo, Zhaowei ;
Guo, Ziyang ;
Wang, Yonggang ;
Xia, Yongyao .
JOULE, 2018, 2 (05) :902-913
[9]   An All-Organic Proton Battery [J].
Emanuelsson, Rikard ;
Sterby, Mia ;
Stromme, Maria ;
Sjodin, Martin .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (13) :4828-4834
[10]   All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents [J].
Fan, Xiulin ;
Ji, Xiao ;
Chen, Long ;
Chen, Ji ;
Deng, Tao ;
Han, Fudong ;
Yue, Jie ;
Piao, Nan ;
Wang, Ruixing ;
Zhou, Xiuquan ;
Xiao, Xuezhang ;
Chen, Lixin ;
Wang, Chunsheng .
NATURE ENERGY, 2019, 4 (10) :882-890