Water Relations and Transpiration of Quinoa (Chenopodium quinoa Willd.) Under Salinity and Soil Drying

被引:117
|
作者
Razzaghi, F. [1 ]
Ahmadi, S. H. [2 ]
Adolf, V. I. [3 ]
Jensen, C. R. [3 ]
Jacobsen, S. -E. [3 ]
Andersen, M. N. [1 ]
机构
[1] Aarhus Univ, Fac Agr Sci, Dept Agroecol & Environm, DK-8830 Tjele, Denmark
[2] Shiraz Univ, Fac Agr, Irrigat Dept, Shiraz, Iran
[3] Univ Copenhagen, Fac Life Sci, Dept Agr & Ecol, Taastrup, Denmark
关键词
apparent root resistance; critical point of irrigation; drought; leaf water potential; stomatal conductance; HYDRAULIC CONDUCTIVITY; STOMATAL CONTROL; PLANT-RESPONSES; SALT TOLERANCE; USE EFFICIENCY; ABSCISIC-ACID; GROWTH; RESISTANCE; DROUGHT; CROP;
D O I
10.1111/j.1439-037X.2011.00473.x
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Drought and salinity are the two major factors limiting crop growth and production in arid and semi-arid regions. The separate and combined effects of salinity and progressive drought in quinoa (Chenopodium quinoa Willd.) were studied in a greenhouse experiment. Stomatal conductance (gs), leaf water potential (Psi(1)), shoot and root abscisic acid concentration ([ABA]) and transpiration rate were measured in full irrigation (FI; around 95 % of water holding capacity (WHC)) and progressive drought (PD) treatments using the irrigation water with five salinity levels (0, 10, 20, 30 and 40 dS m(-1)); the treatments are referred to as FI0, FI10, FI20, FI30, FI40; PD0, PD10, PD20, PD30, PD40, respectively. The measurements were carried out over 9 days of continuous drought. The results showed that increasing salinity levels decreased the total soil water potential (Psi(T)) and consequently decreased g(s) and Psi(1) values in both FI and PD. During the drought period, the xylem [ABA] extracted from the shoots increased faster than that extracted from the roots. A reduction in Psi(T), caused by salinity and soil drying, reduced transpiration and increased apparent root resistance (R) to water uptake, especially in PD0 and PD40 during the last days of the drought period. The reasons for the increase in apparent root resistance are discussed. At the end of the drought period, the minimum value of relative available soil water (RAW) was reached in PD0. Under non-saline conditions, Psi(1) decreased sharply when RAW reached 0.42 or lower, but under the saline conditions of PD10 and PD20, the threshold values of RAW were 0.67 and 0.96, respectively. In conclusion, due to the additive effect of osmotic and matric potential during soil drying on soil water availability, quinoa should be re-irrigated at higher RAW in salt-affected soils, i.e. before the soil water content reaches the critical threshold level causing the drop in Psi(1) resulting in stomatal closure.
引用
收藏
页码:348 / 360
页数:13
相关论文
共 50 条
  • [41] Influence of fertilization and soil tillage on nitrogen uptake and utilization efficiency of quinoa crop (Chenopodium quinoa Willd.)
    Kakabouki, Ioanna P.
    Hela, Dimitra
    Roussis, Ioannis
    Papastylianou, Panagiota
    Sestras, Adriana F.
    Bilalis, Dimitrios J.
    JOURNAL OF SOIL SCIENCE AND PLANT NUTRITION, 2018, 18 (01): : 220 - 235
  • [42] Chlorophyll fluorescence and its relationship with physiological stress in Chenopodium quinoa Willd.
    Garcia-Parra, Miguel
    Stechauner-Rohringer, Roman
    Roa-Acosta, Diego
    Ortiz-Gonzalez, Daniel
    Ramirez-Correa, Jorge
    Plazas-Leguizamon, Nubia
    Colmenares-Cruz, Andres
    NOTULAE BOTANICAE HORTI AGROBOTANICI CLUJ-NAPOCA, 2020, 48 (04) : 1742 - 1755
  • [43] Identifying Some Morphological Features of Mutant Quinoa Plants (Chenopodium quinoa Willd.)
    Egritas, Omer
    Tan, Mustafa
    Haliloglu, Kamil
    LEGUME RESEARCH, 2022, 45 (07) : 815 - 821
  • [44] Combined effects of soil salinity and high temperature on photosynthesis and growth of quinoa plants (Chenopodium quinoa)
    Becker, Verena I.
    Goessling, Johannes W.
    Duarte, Bernardo
    Cacador, Isabel
    Liu, Fulai
    Rosenqvist, Eva
    Jacobsen, Sven-Erik
    FUNCTIONAL PLANT BIOLOGY, 2017, 44 (07) : 665 - 678
  • [45] Molecular mechanisms regulating glucose metabolism in quinoa (Chenopodium quinoa Willd.) seeds under drought stress
    Wang, Chunmei
    Lu, Chuan
    Wang, Junling
    Liu, Xiaoqing
    Wei, Zhimin
    Qin, Yan
    Zhang, Huilong
    Wang, Xiaoxia
    Wei, Boxiang
    Lv, Wei
    Mu, Guojun
    BMC PLANT BIOLOGY, 2024, 24 (01):
  • [46] Nitrogen physiology of contrasting genotypes of Chenopodium quinoa Willd. (Amaranthaceae)
    Bascunan-Godoy, Luisa
    Sanhueza, Carolina
    Pinto, Katherine
    Cifuentes, Leonardo
    Reguera, Maria
    Briones, Vilbett
    Zurita-Silva, Andres
    Alvarez, Rodrigo
    Morales, Andrea
    Silva, Herman
    SCIENTIFIC REPORTS, 2018, 8
  • [47] Physiological responses of quinoa (Chenopodium quinoa Willd.) to drought and waterlogging stresses: dry matter partitioning
    Gonzalez, Juan A.
    Gallardo, Miriam
    Hilal, Mirna
    Rosa, Mariana
    Prado, Fernando E.
    BOTANICAL STUDIES, 2009, 50 (01) : 35 - 42
  • [48] Photosynthetic performance of quinoa (Chenopodium quinoa Willd.) after exposure to a gradual drought stress followed by a recovery period
    Manaa, Arafet
    Goussi, Rahma
    Derbali, Walid
    Cantamessa, Simone
    Essemine, Jemaa
    Barbato, Roberto
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2021, 1862 (05):
  • [49] Physiological and Biochemical Responses of Quinoa (Chenopodium Quinoa Willd) Varieties to Salinity Stress
    Sabzevar, Tahmineh Esfandiyari
    Tatari, Maryam
    Khosroyar, Sosan
    Gharat, Fereshteh
    Salehi, Masoumeh
    IRANIAN JOURNAL OF CHEMISTRY & CHEMICAL ENGINEERING-INTERNATIONAL ENGLISH EDITION, 2023, 42 (11): : 3824 - 3834
  • [50] Effects of Defoliation Timing and Intensity on Yield Components and Grain Quality of Quinoa (Chenopodium quinoa Willd.)
    Ahumada, Maria I.
    Mccartney, Nathaniel B.
    Chorbadjian, Rodrigo A.
    PLANTS-BASEL, 2025, 14 (03):