Water Relations and Transpiration of Quinoa (Chenopodium quinoa Willd.) Under Salinity and Soil Drying

被引:117
|
作者
Razzaghi, F. [1 ]
Ahmadi, S. H. [2 ]
Adolf, V. I. [3 ]
Jensen, C. R. [3 ]
Jacobsen, S. -E. [3 ]
Andersen, M. N. [1 ]
机构
[1] Aarhus Univ, Fac Agr Sci, Dept Agroecol & Environm, DK-8830 Tjele, Denmark
[2] Shiraz Univ, Fac Agr, Irrigat Dept, Shiraz, Iran
[3] Univ Copenhagen, Fac Life Sci, Dept Agr & Ecol, Taastrup, Denmark
关键词
apparent root resistance; critical point of irrigation; drought; leaf water potential; stomatal conductance; HYDRAULIC CONDUCTIVITY; STOMATAL CONTROL; PLANT-RESPONSES; SALT TOLERANCE; USE EFFICIENCY; ABSCISIC-ACID; GROWTH; RESISTANCE; DROUGHT; CROP;
D O I
10.1111/j.1439-037X.2011.00473.x
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Drought and salinity are the two major factors limiting crop growth and production in arid and semi-arid regions. The separate and combined effects of salinity and progressive drought in quinoa (Chenopodium quinoa Willd.) were studied in a greenhouse experiment. Stomatal conductance (gs), leaf water potential (Psi(1)), shoot and root abscisic acid concentration ([ABA]) and transpiration rate were measured in full irrigation (FI; around 95 % of water holding capacity (WHC)) and progressive drought (PD) treatments using the irrigation water with five salinity levels (0, 10, 20, 30 and 40 dS m(-1)); the treatments are referred to as FI0, FI10, FI20, FI30, FI40; PD0, PD10, PD20, PD30, PD40, respectively. The measurements were carried out over 9 days of continuous drought. The results showed that increasing salinity levels decreased the total soil water potential (Psi(T)) and consequently decreased g(s) and Psi(1) values in both FI and PD. During the drought period, the xylem [ABA] extracted from the shoots increased faster than that extracted from the roots. A reduction in Psi(T), caused by salinity and soil drying, reduced transpiration and increased apparent root resistance (R) to water uptake, especially in PD0 and PD40 during the last days of the drought period. The reasons for the increase in apparent root resistance are discussed. At the end of the drought period, the minimum value of relative available soil water (RAW) was reached in PD0. Under non-saline conditions, Psi(1) decreased sharply when RAW reached 0.42 or lower, but under the saline conditions of PD10 and PD20, the threshold values of RAW were 0.67 and 0.96, respectively. In conclusion, due to the additive effect of osmotic and matric potential during soil drying on soil water availability, quinoa should be re-irrigated at higher RAW in salt-affected soils, i.e. before the soil water content reaches the critical threshold level causing the drop in Psi(1) resulting in stomatal closure.
引用
收藏
页码:348 / 360
页数:13
相关论文
共 50 条
  • [31] Quinoa (Chenopodium quinoa Willd.): Genetic Diversity According to ISSR and SCoT Markers, Relative Gene Expression, and Morpho-Physiological Variation under Salinity Stress
    Abd El-Moneim, Diaa
    ELsarag, Eman I. S.
    Aloufi, Salman
    El-Azraq, Asmaa M.
    ALshamrani, Salha Mesfer
    Safhi, Fatmah Ahmed Ahmed
    Ibrahim, Amira A.
    PLANTS-BASEL, 2021, 10 (12):
  • [32] Physiological, Biochemical, and Molecular Responses of Quinoa (Chenopodium quinoa Willd.) to Elicitors Under Drought Stress
    Forouzandeh, Mohamad
    Parsa, Soheil
    Mahmoodi, Sohrab
    Izanloo, Ali
    PLANT MOLECULAR BIOLOGY REPORTER, 2024, 42 (03) : 515 - 531
  • [33] Effects of NaCl Application on Cesium Accumulation in the Aboveground Parts of Quinoa (Chenopodium quinoa Willd.)
    Wada, Kengo
    Takagi, Riyako
    Horikoshi, Masaori
    Higo, Masao
    Isobe, Katsunori
    WATER AIR AND SOIL POLLUTION, 2020, 231 (11)
  • [34] Effects of Deficit Irrigation and Fertilization on Quinoa (Chenopodium quinoa Willd.) Water Status and Yield Productions
    Fghire, Rachid
    Anaya, Fatima
    Ali, Oudou Issa
    Lamnai, Kamal
    Foughali, Boubaker
    Faghire, Mustapha
    Benlhabib, Ouafae
    Wahbi, Said
    GESUNDE PFLANZEN, 2022, 74 (01): : 97 - 110
  • [35] Preliminary Studies of the Performance of Quinoa (Chenopodium quinoa Willd.) Genotypes under Irrigated and Rainfed Conditions of Central Malawi
    Maliro, Moses F. A.
    Guwela, Veronica F.
    Nyaika, Jacinta
    Murphy, Kevin M.
    FRONTIERS IN PLANT SCIENCE, 2017, 8
  • [36] Quinoa (Chenopodium quinoa Willd.) and its relationship with agroclimatic characteristics: A Colombian perspective
    Garcia-Parra, Miguel
    Zurita-Silva, Andres
    Stechauner, Roman
    Roa, Diego F.
    Jacobsen, Sven-Erik
    CHILEAN JOURNAL OF AGRICULTURAL RESEARCH, 2020, 80 (02): : 290 - 302
  • [37] Agro-Morphological, Yield and Quality Traits and Interrelationship with Yield Stability in Quinoa (Chenopodium quinoa Willd.) Genotypes under Saline Marginal Environment
    Hussain, M. Iftikhar
    Muscolo, Adele
    Ahmed, Mukhtar
    Asghar, Muhammad Ahsan
    Al-Dakheel, Abdullah J.
    PLANTS-BASEL, 2020, 9 (12): : 1 - 18
  • [38] Biochar Reduces Copper Toxicity in Chenopodium quinoa Willd. in a Sandy Soil
    Buss, Wolfram
    Kammann, Claudia
    Koyro, Hans-Werner
    JOURNAL OF ENVIRONMENTAL QUALITY, 2012, 41 (04) : 1157 - 1165
  • [39] Nutrient composition, functional activity and industrial applications of quinoa (Chenopodium quinoa Willd.)
    Ren, Guixing
    Teng, Cong
    Fan, Xin
    Guo, Shengyuan
    Zhao, Gang
    Zhang, Lizhen
    Liang, Zou
    Qin, Peiyou
    FOOD CHEMISTRY, 2023, 410
  • [40] Theoretical Design for the Production of Quinoa (Chenopodium quinoa Willd.) in a Closed Plant Factory
    Bae, Jong Hyang
    Austin, Jirapa
    Jeon, Yoon-A
    Cha, Mi-Kyung
    Cho, Young-Yeol
    KOREAN JOURNAL OF HORTICULTURAL SCIENCE & TECHNOLOGY, 2016, 34 (06) : 840 - 844