Lower Bounds for the Canonical Height on Drinfeld Modules

被引:3
作者
Bosser, Vincent [1 ]
Galateau, Aurelien [2 ]
机构
[1] Univ Caen, Caen, France
[2] Univ Franche Comte, Besancon, France
关键词
MORDELL-WEIL THEOREM; NERON-TATE HEIGHT; LEHMER INEQUALITY;
D O I
10.1093/imrn/rnx112
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use diophantine approximation to bound from below the canonical height on a Drinfeld module. We first give a positive answer to the Lehmer problem in the case of purely inseparable extensions on Drinfeld modules with at least one supersingular prime. We also revisit the CM case, where we improve the estimates already known, and we finally give a bound of polynomial strength in the general case.
引用
收藏
页码:165 / 200
页数:36
相关论文
共 28 条
[1]   A lower bound for the height in Abelian extensions [J].
Amoroso, F ;
Dvornicich, R .
JOURNAL OF NUMBER THEORY, 2000, 80 (02) :260-272
[2]  
Amoroso F, 1999, J REINE ANGEW MATH, V513, P145
[3]   Small points on rational subvarieties of tori [J].
Amoroso, Francesco ;
Viada, Evelina .
COMMENTARII MATHEMATICI HELVETICI, 2012, 87 (02) :355-383
[4]   Lower Bound for the canonical height for Drinfeld modules with complex multiplication [J].
Bauchere, Hugues .
JOURNAL OF NUMBER THEORY, 2015, 157 :291-328
[5]   SINGULAR MODULI AND SUPERSINGULAR MODULI OF DRINFELD MODULES [J].
BROWN, ML .
INVENTIONES MATHEMATICAE, 1992, 110 (02) :419-439
[6]  
David S, 2000, J REINE ANGEW MATH, V529, P1
[7]   The Lehmer Abelien issue for a Drinfel'd model [J].
David, Sinnou ;
Pacheco, Amilcar .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2008, 4 (06) :1043-1067
[8]  
Demangos L., 2017, ARXIVMATHNT13020152V
[9]   CANONICAL HEIGHTS AND DRINFELD MODULES [J].
DENIS, L .
MATHEMATISCHE ANNALEN, 1992, 294 (02) :213-223
[10]  
DENIS L, 1995, J THEOR NOMBR BORDX, V7, P97