Comparative proteomic and physiological characterisation of two closely related rice genotypes with contrasting responses to salt stress

被引:20
|
作者
Hosseini, Seyed Abdollah [1 ]
Gharechahi, Javad [2 ]
Heidari, Manzar [1 ]
Koobaz, Parisa [1 ]
Abdollahi, Shapour [1 ]
Mirzaei, Mehdi [3 ]
Nakhoda, Babak [1 ]
Salekdeh, Ghasem Hosseini [4 ]
机构
[1] Agr Biotechnol Res Inst Iran, Dept Mol Physiol, Karaj 3135933151, Iran
[2] Baqiyatallah Univ Med Sci, Chem Injuries Res Ctr, Tehran 1435916471, Iran
[3] Macquarie Univ, Dept Chem & Biomol Sci, Sydney, NSW 2109, Australia
[4] Agr Biotechnol Res Inst Iran, Dept Syst Biol, Karaj 3135933151, Iran
基金
澳大利亚研究理事会;
关键词
2D gel electrophoresis; mass spectrometry; Oryza sativa; salinity; sensitivity; tolerance; GLUTATHIONE-S-TRANSFERASE; SALINITY TOLERANCE; EXOGENOUS POLYAMINES; OXIDATIVE STRESS; TRANSGENIC RICE; PLASMA-MEMBRANE; TOMATO PLANTS; CELL-DEATH; PROTEINS; EXPRESSION;
D O I
10.1071/FP14274
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Salinity is a limiting factor affecting crop growth. We evaluated the responses of a salt-tolerant recombinant inbred rice (Oryza sativa L.) line, FL478, and the salt-sensitive IR29. Seedlings were exposed to salt stress and the growth rate was monitored to decipher the effect of long-term stress. At Day 16, IR29 produced lower shoot biomass than FL478. Significant differences for Na+ and K+ concentrations and Na+:K+ ratios in roots and shoots were observed between genotypes. Changes in the proteomes of control and salt-stressed plants were analysed, identifying 59 and 39 salt-responsive proteins in roots and leaves, respectively. Proteomic analysis showed greater downregulation of proteins in IR29. In IR29, proteins related to pathways involved in salt tolerance (e.g. oxidative stress response, amino acid biosynthesis, polyamine biosynthesis, the actin cytoskeleton and ion compartmentalisation) changed to combat salinity. We found significant downregulation of proteins related to photosynthetic electron transport in IR29, indicating that photosynthesis was influenced, probably increasing the risk of reactive oxygen species formation. The sensitivity of IR29 might be related to its inability to exclude salt from its transpiration stream, to compartmentalise excess ions and to maintain a healthy photosynthetic apparatus during salt stress, or might be because of the leakiness of its roots, allowing excess salt to enter apoplastically. In FL478, superoxide dismutase, ferredoxin thioredoxin reductase, fibre protein and inorganic pyrophosphatase, which may participate in salt tolerance, increased in abundance. Our analyses provide novel insights into the mechanisms behind salt tolerance and sensitivity in genotypes with close genetic backgrounds.
引用
收藏
页码:527 / 542
页数:16
相关论文
共 50 条
  • [41] Comparative Analysis of the Expression of Candidate Genes Governing Salt Tolerance and Yield Attributes in Two Contrasting Rice Genotypes, Encountering Salt Stress During Grain Development
    Saikat Paul
    Aryadeep Roychoudhury
    Journal of Plant Growth Regulation, 2019, 38 : 539 - 556
  • [42] Physiological characterization of reproductive stage heat stress tolerance in contrasting rice genotypes
    Sourabh Karwa
    Sunder Singh Arya
    Sadhana Maurya
    Madan Pal
    Plant Physiology Reports, 2020, 25 : 157 - 162
  • [43] Effect of salt stress on photosynthesis and physiological parameters of three contrasting barley genotypes
    Mahlooji, M.
    Sharifi, R. Seyed
    Razmjoo, J.
    Sabzalian, M. R.
    Sedghi, M.
    PHOTOSYNTHETICA, 2018, 56 (02) : 549 - 556
  • [44] Comparative Analysis of the Expression of Candidate Genes Governing Salt Tolerance and Yield Attributes in Two Contrasting Rice Genotypes, Encountering Salt Stress During Grain Development
    Paul, Saikat
    Roychoudhury, Aryadeep
    JOURNAL OF PLANT GROWTH REGULATION, 2019, 38 (02) : 539 - 556
  • [45] Physiological characterization of reproductive stage heat stress tolerance in contrasting rice genotypes
    Karwa, Sourabh
    Arya, Sunder Singh
    Maurya, Sadhana
    Pal, Madan
    PLANT PHYSIOLOGY REPORTS, 2020, 25 (01) : 157 - 162
  • [46] Comparative physiological analysis in the tolerance to salinity and drought individual and combination in two cotton genotypes with contrasting salt tolerance
    Ibrahim, Wasim
    Qiu, Cheng-Wei
    Zhang, Can
    Cao, Fangbin
    Zhu Shuijin
    Wu, Feibo
    PHYSIOLOGIA PLANTARUM, 2019, 165 (02) : 155 - 168
  • [47] Salt-stress induced alterations in the root lipidome of two barley genotypes with contrasting responses to salinity
    Natera, Siria H. A.
    Hill, Camilla B.
    Rupasinghe, Thusitha W. T.
    Roessner, Ute
    FUNCTIONAL PLANT BIOLOGY, 2016, 43 (02) : 207 - 219
  • [48] Comparative physiology and proteomic analysis of two wheat genotypes contrasting in drought tolerance
    Faghani, Elham
    Gharechahi, Javad
    Komatsu, Setsuko
    Mirzaei, Mehdi
    Khavarinejad, Raman Ali
    Najafi, Farzaneh
    Farsad, Laleh Karimi
    Salekdeh, Ghasern Hosseini
    JOURNAL OF PROTEOMICS, 2015, 114 : 1 - 15
  • [49] Comparative analysis of metabolite changes in two contrasting rice genotypes in response to low-nitrogen stress
    Xiuqin Zhao
    Wensheng Wang
    Ziyan Xie
    Yongming Gao
    Chunchao Wang
    Muhammed Mahbubur Rashid
    Mohammad Rafiqul Islam
    Binying Fu
    Zhikang Li
    TheCropJournal, 2018, 6 (05) : 464 - 474
  • [50] Comparative analysis of metabolite changes in two contrasting rice genotypes in response to low-nitrogen stress
    Zhao, Xiuqin
    Wang, Wensheng
    Xie, Ziyan
    Gao, Yongming
    Wang, Chunchao
    Rashid, Muhammed Mahbubur
    Islam, Mohammad Rafiqul
    Fu, Binying
    Li, Zhikang
    CROP JOURNAL, 2018, 6 (05): : 464 - 474