Solutions of the heat equation in domains with singularities

被引:14
作者
Aref'ev, VN [1 ]
Bagirov, LA [1 ]
机构
[1] Russian Acad Sci, Inst Problems Mech, Moscow 117901, Russia
关键词
heat equation; time-dependent domain; singular points; asymptotics of solutions;
D O I
10.1007/BF02310297
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the asymptotics dependent domains with singular points.
引用
收藏
页码:139 / 153
页数:15
相关论文
共 50 条
[41]   EXISTENCE AND CONVEXITY OF SOLUTIONS OF THE FRACTIONAL HEAT EQUATION [J].
Greco, Antonio ;
Iannizzotto, Antonio .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2017, 16 (06) :2201-2226
[42]   Multiple blowup of solutions for a semilinear heat equation [J].
Noriko Mizoguchi .
Mathematische Annalen, 2005, 331 :461-473
[43]   A gradient estimate for solutions of the heat equation II [J].
Kahane, CS .
CZECHOSLOVAK MATHEMATICAL JOURNAL, 2001, 51 (01) :39-44
[44]   On analytic solutions of the heat equation with an operator coefficient [J].
Vershynia A. ;
Geftr S. .
Journal of Mathematical Sciences, 2009, 156 (5) :799-812
[45]   An integral equation-based numerical method for the forced heat equation on complex domains [J].
Fryklund, Fredrik ;
Kropinski, Mary Catherine A. ;
Tornberg, Anna-Karin .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2020, 46 (05)
[46]   The Lp Neumann problem for the heat equation in non-cylindrical domains [J].
Hofmann, S ;
Lewis, JL .
JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 220 (01) :1-54
[47]   On an inverse type problem for the heat equation in parabolic regular graph domains [J].
Kaj Nyström .
Mathematische Zeitschrift, 2012, 270 :197-222
[48]   Regularity and discrete schemes for the heat equation on non-smooth domains [J].
Chin, Pius W. M. ;
Lubuma, Jean M. -S. ;
Patidar, Kailash C. .
COMPUTATION IN MODERN SCIENCE AND ENGINEERING VOL 2, PTS A AND B, 2007, 2 :1170-+
[49]   On an inverse type problem for the heat equation in parabolic regular graph domains [J].
Nystrom, Kaj .
MATHEMATISCHE ZEITSCHRIFT, 2012, 270 (1-2) :197-222
[50]   Numerical solution of the heat equation with nonlinear boundary conditions in unbounded domains [J].
Koleva, Migiena ;
Vulkov, Lubin .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2007, 23 (02) :379-399