Estimation of High-Resolution Daily Ground-Level PM2.5 Concentration in Beijing 2013-2017 Using 1 km MAIAC AOT Data

被引:15
作者
Han, Weihong [1 ]
Tong, Ling [1 ]
Chen, Yunping [1 ]
Li, Runkui [2 ]
Yan, Beizhan [3 ]
Liu, Xue [4 ]
机构
[1] Univ Elect Sci & Technol China, Sch Automat Engn, Chengdu 611731, Sichuan, Peoples R China
[2] Univ Chinese Acad Sci, Coll Resources & Environm, Beijing 100049, Peoples R China
[3] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY 10964 USA
[4] Columbia Univ, Ctr Int Earth Sci Informat Network, Earth Inst, Palisades, NY 10964 USA
来源
APPLIED SCIENCES-BASEL | 2018年 / 8卷 / 12期
基金
中国国家自然科学基金;
关键词
urban pollution; remote sensing; PM2.5; AOT; AEROSOL OPTICAL DEPTH; REMOTE-SENSING DATA; UNITED-STATES; MODIS SATELLITE; CHINA; REGRESSION; POLLUTION; NETWORK; AERONET; TRENDS;
D O I
10.3390/app8122624
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
High-spatiotemporal-resolution PM2.5 data are critical to assessing the impacts of prolonged exposure to PM2.5 on human health, especially for urban areas. Satellite-derived aerosol optical thickness (AOT) is highly correlated to ground-level PM2.5, providing an effective way to reveal spatiotemporal variations of PM2.5 across urban landscapes. In this paper, Multi-Angle Implementation of Atmospheric Correction (MAIAC) AOT and ground-based PM2.5 measurements were fused to estimate daily ground-level PM2.5 concentrations in Beijing for 2013-2017 at 1 km resolution through a linear mixed effect model (LMEM). The results showed a good agreement between the estimated and measured PM2.5 and effectively revealed the characteristics of its spatiotemporal variations across Beijing: (1) the PM2.5 level is higher in the central and southern areas, while it is lower in the northern and northwestern areas; (2) the PM2.5 level is higher in autumn and winter, while it is lower in spring and summer. Moreover, annual PM2.5 concentrations decreased by 24.03% for the whole of Beijing and 31.46% for the downtown area from 2013 to 2017. The PM2.5 data products we generated can be used to assess the long-term impacts of PM2.5 on human health and support relevant government policy decision-making, and the methodology can be applied to other heavily polluted urban areas.
引用
收藏
页数:17
相关论文
共 37 条
[1]   High-Resolution Air Pollution Mapping with Google Street View Cars: Exploiting Big Data [J].
Apte, Joshua S. ;
Messier, Kyle P. ;
Gani, Shahzad ;
Brauer, Michael ;
Kirchstetter, Thomas W. ;
Lunden, Melissa M. ;
Marshall, Julian D. ;
Portier, Christopher J. ;
Vermeulen, Roel C. H. ;
Hamburg, Steven P. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2017, 51 (12) :6999-7008
[2]   Calibrating MODIS aerosol optical depth for predicting daily PM2.5 concentrations via statistical downscaling [J].
Chang, Howard H. ;
Hu, Xuefei ;
Liu, Yang .
JOURNAL OF EXPOSURE SCIENCE AND ENVIRONMENTAL EPIDEMIOLOGY, 2014, 24 (04) :398-404
[3]   High resolution aerosol data from MODIS satellite for urban air quality studies [J].
Chudnovsky, A. ;
Lyapustin, A. ;
Wang, Y. ;
Tang, C. ;
Schwartz, J. ;
Koutrakis, P. .
CENTRAL EUROPEAN JOURNAL OF GEOSCIENCES, 2014, 6 (01) :17-26
[4]   Fine particulate matter predictions using high resolution Aerosol Optical Depth (AOD) retrievals [J].
Chudnovsky, Alexandra A. ;
Koutrakis, Petros ;
Kloog, Itai ;
Melly, Steven ;
Nordio, Francesco ;
Lyapustin, Alexei ;
Wang, Yujie ;
Schwartz, Joel .
ATMOSPHERIC ENVIRONMENT, 2014, 89 :189-198
[5]   Recommendations on the use of satellite remote-sensing data for urban air quality [J].
Engel-Cox, JA ;
Hoff, RM ;
Haymet, ADJ .
JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION, 2004, 54 (11) :1360-1371
[6]   Qualitative and quantitative evaluation of MODIS satellite sensor data for regional and urban scale air quality [J].
Engel-Cox, JA ;
Holloman, CH ;
Coutant, BW ;
Hoff, RM .
ATMOSPHERIC ENVIRONMENT, 2004, 38 (16) :2495-2509
[7]   Estimating ground-level PM2.5 concentrations in Beijing using a satellite-based geographically and temporally weighted regression model [J].
Guo, Yuanxi ;
Tang, Qiuhong ;
Gong, Dao-Yi ;
Zhang, Ziyin .
REMOTE SENSING OF ENVIRONMENT, 2017, 198 :140-149
[8]   Particulate matter air quality assessment using integrated surface, satellite, and meteorological products: Multiple regression approach [J].
Gupta, Pawan ;
Christopher, Sundar A. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2009, 114
[9]   Spatio-temporal variation and impact factors analysis of satellite-based aerosol optical depth over China from 2002 to 2015 [J].
He, Qingqing ;
Zhang, Ming ;
Huang, Bo .
ATMOSPHERIC ENVIRONMENT, 2016, 129 :79-90
[10]   AERONET - A federated instrument network and data archive for aerosol characterization [J].
Holben, BN ;
Eck, TF ;
Slutsker, I ;
Tanre, D ;
Buis, JP ;
Setzer, A ;
Vermote, E ;
Reagan, JA ;
Kaufman, YJ ;
Nakajima, T ;
Lavenu, F ;
Jankowiak, I ;
Smirnov, A .
REMOTE SENSING OF ENVIRONMENT, 1998, 66 (01) :1-16