Weaker variants of infinite time Turing machines

被引:1
作者
Bianchetti, Matteo [1 ]
机构
[1] Univ Notre Dame, Dept Philosophy, 100 Malloy Hall, Notre Dame, IN 46556 USA
关键词
Ordinal computability; Infinite time Turing machine; Transfinite computation; Supertask; Arithmetic hierarchy; Real arithmetic;
D O I
10.1007/s00153-019-00692-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Infinite time Turing machines represent a model of computability that extends the operations of Turing machines to transfinite ordinal time by defining the content of each cell at limit steps to be the lim sup of the sequences of previous contents of that cell. In this paper, we study a computational model obtained by replacing the lim sup rule with an 'eventually constant' rule: at each limit step, the value of each cell is defined if and only if the content of that cell has stabilized before that limit step and is then equal to this constant value. We call these machines weak infinite time Turing machines (wITTMs). We study different variants of wITTMs adding multiple tapes, heads, or bidimensional tapes. We show that some of these models are equivalent to each other concerning their computational strength. We show that wITTMs decide exactly the arithmetic relations on natural numbers.
引用
收藏
页码:335 / 365
页数:31
相关论文
共 6 条
[1]   CONSTRUCTIVE GEOMETRY AND THE PARALLEL POSTULATE [J].
Beeson, Michael .
BULLETIN OF SYMBOLIC LOGIC, 2016, 22 (01) :1-104
[2]  
Bianchetti M, 2017, THESIS
[3]  
Carl M, ORDINAL COMPUTABILIT
[4]  
Descartes R., 1637, Discours de la methode pour bien conduire sa raison, & chercher la verite dans les sciences, plus la Dioptrique, les Meteores et la Geometrie qui sont des essais de cete Methode
[5]   Infinite time Turing machines [J].
Hamkins, JD ;
Lewis, A .
JOURNAL OF SYMBOLIC LOGIC, 2000, 65 (02) :567-604
[6]  
Rogers H, 1967, THEORY FO RECURSIVE