High-donor electrolyte additive enabling stable aqueous zinc-ion batteries

被引:194
作者
Deng, Wenjing [1 ]
Xu, Zhixiao [1 ]
Wang, Xiaolei [1 ]
机构
[1] Univ Alberta, Dept Chem & Mat Engn, 9211-116 St NW, Edmonton, AB T6G 1H9, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Zinc anode; Aqueous electrolyte; Donor number; Solvati on structure; Organic solvent additive;
D O I
10.1016/j.ensm.2022.07.032
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The performance benefits of metallic zinc, despite many promising characteristics (such as low cost and high capacity) in rechargeable batteries, are still compromised by dendritic growth and parasitic side reactions originating from reactive aqueous electrolytes, which dramatically restrain future application. In this work, a facile strategy is proposed via introducing high-donor-number organic solvent N, N-dimethyl acetamide (DMA) as electrolyte additive to achieve high Zn reversibility. Based on multiscale theoretical and experimental investigations, it is demonstrated that high-donor DMA additive with strong electron-donating ability can confine free water activity, replace the water in Zn2+ solvation sheath, and reshape hydrogen-bonding network of water. The DMA-modified electrolyte enables remarkable suppression of water-involved hydrogen evolution and severe corrosion, which contributes to preferentially uniform deposition and ultralong cycling life of 4500 h at current density of 1 mA cm(-2) in symmetric cell, and high Coulombic efficiency of 99.6% in asymmetric cell. Coupling with VO2-based cathodes, the full battery can deliver high specific capacity of 261 mAh g(-1) at -18 degrees C and long operation stability of 500 cycles. This strategy presents a promising approach for development of high-performance aqueous metal batteries.
引用
收藏
页码:52 / 60
页数:9
相关论文
共 42 条
[1]   Modulating Zn deposition via ceramic-cellulose separator with interfacial polarization effect for durable zinc anode [J].
Cao, Jin ;
Zhang, Dongdong ;
Gu, Chao ;
Zhang, Xinyu ;
Okhawilai, Manunya ;
Wang, Shanmin ;
Han, Jiantao ;
Qin, Jiaqian ;
Huang, Yunhui .
NANO ENERGY, 2021, 89
[2]   Solvation Structure Design for Aqueous Zn Metal Batteries [J].
Cao, Longsheng ;
Li, Dan ;
Hu, Enyuan ;
Xu, Jijian ;
Deng, Tao ;
Ma, Lin ;
Wang, Yi ;
Yang, Xiao-Qing ;
Wang, Chunsheng .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (51) :21404-21409
[3]   Eliminating Zn dendrites by commercial cyanoacrylate adhesive for zinc ion battery [J].
Cao, Ziyi ;
Zhu, Xiaodong ;
Xu, Dongxiao ;
Dong, Pei ;
Chee, Mason Oliver Lam ;
Li, Xinjie ;
Zhu, Keyu ;
Ye, Mingxin ;
Shen, Jianfeng .
ENERGY STORAGE MATERIALS, 2021, 36 :132-138
[4]   A Sieve-Functional and Uniform-Porous Kaolin Layer toward Stable Zinc Metal Anode [J].
Deng, Canbin ;
Xie, Xuesong ;
Han, Junwei ;
Tang, Yan ;
Gao, Jiawei ;
Liu, Cunxin ;
Shi, Xiaodong ;
Zhou, Jiang ;
Liang, Shuquan .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (21)
[5]   Hybrid interlayer enables dendrite-free and deposition-modulated zinc anodes [J].
Deng, Wenjing ;
Zhang, Nianji ;
Wang, Xiaolei .
CHEMICAL ENGINEERING JOURNAL, 2022, 432
[6]   Immunizing Aqueous Zn Batteries against Dendrite Formation and Side Reactions at Various Temperatures via Electrolyte Additives [J].
Feng, Doudou ;
Cao, Faqing ;
Hou, Lei ;
Li, Tianyu ;
Jiao, Yucong ;
Wu, Peiyi .
SMALL, 2021, 17 (42)
[7]   An In-Depth Study of Zn Metal Surface Chemistry for Advanced Aqueous Zn-Ion Batteries [J].
Hao, Junnan ;
Li, Bo ;
Li, Xiaolong ;
Zeng, Xiaohui ;
Zhang, Shilin ;
Yang, Fuhua ;
Liu, Sailin ;
Li, Dan ;
Wu, Chao ;
Guo, Zaiping .
ADVANCED MATERIALS, 2020, 32 (34)
[8]   Realizing wide-temperature Zn metal anodes through concurrent interface stability regulation and solvation structure modulation [J].
Hou, Zhen ;
Lu, Ziheng ;
Chen, Qianwen ;
Zhang, Biao .
ENERGY STORAGE MATERIALS, 2021, 42 :517-525
[9]   Stabilizing Zinc Anodes by Regulating the Electrical Double Layer with Saccharin Anions [J].
Huang, Cong ;
Zhao, Xin ;
Liu, Shuang ;
Hao, Yisu ;
Tang, Qunli ;
Hu, Aiping ;
Liu, Zhixiao ;
Chen, Xiaohua .
ADVANCED MATERIALS, 2021, 33 (38)
[10]   Advanced Zinc Anode with Nitrogen-Doping Interface Induced by Plasma Surface Treatment [J].
Jia, Hao ;
Qiu, Minghui ;
Lan, Chuntao ;
Liu, Hongqi ;
Dirican, Mahmut ;
Fu, Shaohai ;
Zhang, Xiangwu .
ADVANCED SCIENCE, 2022, 9 (03)