Kahler-Ricci solitons on toric Fano orbifolds

被引:17
作者
Shi, Yalong [2 ,3 ]
Zhu, Xiaohua [1 ]
机构
[1] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
[2] Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
[3] Nanjing Univ, Inst Math Sci, Nanjing 210093, Jiangsu, Peoples R China
关键词
Kahler-Ricci soliton; Toric Fano orbifold; Kahler-Einstein metric; V-MANIFOLDS; VARIETIES; METRICS; UNIQUENESS; INVARIANT;
D O I
10.1007/s00209-011-0913-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the existence of Kahler-Ricci solitons on toric Fano orbifolds, hence extend the theorem of Wang and Zhu (Adv Math 188:87-103, 2004) to the orbifold case.
引用
收藏
页码:1241 / 1251
页数:11
相关论文
共 21 条
[1]  
Abreu M, 2001, J DIFFER GEOM, V58, P151
[2]  
[Anonymous], 2015, Elliptic Partial Differential Equations of Second Order. Classics in Mathematics
[3]   THE DECOMPOSITION THEOREM FOR V-MANIFOLDS [J].
BAILY, WL .
AMERICAN JOURNAL OF MATHEMATICS, 1956, 78 (04) :862-888
[4]   ON THE IMBEDDING OF V-MANIFOLDS IN PROJECTIVE SPACE [J].
BAILY, WL .
AMERICAN JOURNAL OF MATHEMATICS, 1957, 79 (02) :403-430
[5]   KAHLER METRICS ON SINGULAR TORIC VARIETIES [J].
Burns, Dan ;
Guillemin, Victor ;
Lerman, Eugene .
PACIFIC JOURNAL OF MATHEMATICS, 2008, 238 (01) :27-40
[6]  
Calderbank D., 2002, Journal of Symplectic Geometry, V4, P767
[7]  
Chiang Yuan-Jen, 1990, Ann. Global Anal. Geom., V8, P315, DOI [10.1007/BF00127941, DOI 10.1007/BF00127941]
[8]  
Cox D., 2010, GSM SERIES IN PRESS
[9]  
Cox D. A., 1995, J ALGEBRAIC GEOM, V4, P17
[10]  
Debarre O, 2003, BOLYAI SOC MATH STUD, V12, P93