Leak K+ channel mRNAs in dorsal root ganglia: Relation to inflammation and spontaneous pain behaviour

被引:99
作者
Marsh, Barnaby [1 ]
Acosta, Cristian [1 ]
Djouhri, Laiche [1 ]
Lawson, Sally N. [1 ]
机构
[1] Univ Bristol, Sch Physiol & Pharmacol, Bristol BS8 1TD, Avon, England
基金
英国惠康基金;
关键词
K2P mRNA; KCNKx.x; Potassium channel; DRG; TRESK; TASK; DOMAIN POTASSIUM CHANNELS; NERVE GROWTH-FACTOR; NEUROPATHIC PAIN; SENSORY NEURONS; TASK3; CHANNELS; EXPRESSION; CYTOKINES; PCR; PROTEIN; ROLES;
D O I
10.1016/j.mcn.2012.01.002
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Two pore domain potassium (K2P) channels (KCNKx.x) cause K + leak currents and are major contributors to resting membrane potential. Their roles in dorsal root ganglion (DRG) neurons normally, and in pathological pain models, are poorly understood. Therefore, we examined mRNA levels for 10 K2P channels in L4 and L5 rat DRGs normally, and 1 day and 4 days after unilateral cutaneous inflammation, induced by intradermal complete Freund's adjuvant (CFA) injections. Spontaneous foot lifting (SFL) duration (spontaneous pain behaviour) was measured in 1 day and 4 day rats < 1 h before DRG harvest. mRNA levels for KCNK channels and Kv1.4 relative to GAPDH (n = 4-6 rats/group) were determined with real-time RT-PCR. This study is the first to demonstrate expression of THIK1, THIK2 and TWIK2 mRNA in DRGs. Abundance in normal DRGs was, in descending order: Kv1.4 > TRESK(KCNK18) > TRAAK(KCNK4) > TREK2(KCNK10) = TWIK2(KCNK6) > TREK 1 (KCNK2) = THIK2 (KCNK12) > TASK1(KCNK3) > TASK2(KCNK5) > THIK1(KCNK13) = TASK3(KCNK9). During inflammation, the main differences from normal in DRG mRNA levels were bilateral, suggesting systemic regulation, although some channels showed evidence of ipsilateral modulation. By 1 day, bilateral K2P mRNA levels had decreased (THIK1) or increased (TASK], THIK2) but by 4 days they were consistently decreased (TASK2, TASK3) or tended to decrease (excluding TRAAK). The decreased TASK2 mRNA was mirrored by decreased protein (TASK2-immunoreactivity) at 4 days. Ipsilateral mRNA levels at 4 days compared with 1 day were lower (TRESK, TASK], TASK3, TASK2 and THIK2) or higher (THIK1) .Ipsilateral SFL duration during inflammation was positively correlated with ipsilateral TASK1 and TASK3 mRNAs, and contralateral TASK1, TRESK and TASK2 mRNAs. Thus changes in K2P mRNA levels occurred during inflammation and for 4 K2P channels were associated with spontaneous pain behaviour (SFL). K2P channels and their altered expression are therefore associated with inflammation-induced pain. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:375 / 386
页数:12
相关论文
共 84 条
[1]   Impaired neuropathic pain responses in mice lacking the chemokine receptor CCR2 [J].
Abbadie, C ;
Lindia, JA ;
Cumiskey, AM ;
Peterson, LB ;
Mudgett, JS ;
Bayne, EK ;
DeMartino, JA ;
MacIntyre, DE ;
Forrest, MJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (13) :7947-7952
[2]   Changes in expression of some two-pore domain potassium channel genes (KCNK) in selected brain regions of developing mice [J].
Aller, M. I. ;
Wisden, W. .
NEUROSCIENCE, 2008, 151 (04) :1154-1172
[3]   TREK-1, a K+ channel involved in polymodal pain perception [J].
Alloui, Abdelkrim ;
Zimmermann, Katharina ;
Mamet, Julien ;
Duprat, Fabrice ;
Noel, Jacques ;
Chemin, Jean ;
Guy, Nicolas ;
Blondeau, Nicolas ;
Voilley, Nicolas ;
Rubat-Coudert, Catherine ;
Borsotto, Marc ;
Romey, Georges ;
Heurteaux, Catherine ;
Reeh, Peter ;
Eschalier, Alain ;
Lazdunski, Michel .
EMBO JOURNAL, 2006, 25 (11) :2368-2376
[4]   TASK-5, a novel member of the tandem pore K+ channel family [J].
Ashmole, I ;
Goodwin, PA ;
Stanfield, PR .
PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY, 2001, 442 (06) :828-833
[5]   Background potassium channel block and TRPV1 activation contribute to proton depolarization of sensory neurons from humans with neuropathic pain [J].
Baumann, TK ;
Chaudhary, P ;
Martenson, ME .
EUROPEAN JOURNAL OF NEUROSCIENCE, 2004, 19 (05) :1343-1351
[6]   Emerging roles for two-pore-domain potassium channels and their potential therapeutic impact [J].
Bayliss, Douglas A. ;
Barrett, Paula Q. .
TRENDS IN PHARMACOLOGICAL SCIENCES, 2008, 29 (11) :566-575
[7]   From the Background to the Spotlight: TASK Channels in Pathological Conditions [J].
Bittner, Stefan ;
Budde, Thomas ;
Wiendl, Heinz ;
Meuth, Sven G. .
BRAIN PATHOLOGY, 2010, 20 (06) :999-1009
[8]   Genomic organization and chromosomal localization of the murine 2 P domain potassium channel gene Kcnk8:: conservation of gene structure in 2 P domain potassium channels [J].
Bockenhauer, D ;
Nimmakayalu, MA ;
Ward, DC ;
Goldstein, SAN ;
Gallagher, PG .
GENE, 2000, 261 (02) :365-372
[9]   TASK-3 two-pore domain potassium channels enable sustained high-frequency firing in cerebellar granule neurons [J].
Brickley, Stephen G. ;
Aller, M. Isabel ;
Sandu, Cristina ;
Veale, Emma L. ;
Alder, Felicity G. ;
Sambi, Harvinder ;
Mathie, Alistair ;
Wisden, William .
JOURNAL OF NEUROSCIENCE, 2007, 27 (35) :9329-9340
[10]   MIQE precis: Practical implementation of minimum standard guidelines for fluorescence-based quantitative real-time PCR experiments [J].
Bustin, Stephen A. ;
Beaulieu, Jean-Francois ;
Huggett, Jim ;
Jaggi, Rolf ;
Kibenge, Frederick S. B. ;
Olsvik, Pal A. ;
Penning, Louis C. ;
Toegel, Stefan .
BMC MOLECULAR BIOLOGY, 2010, 11