Comparison of OMI UV observations with ground-based measurements at high northern latitudes

被引:43
作者
Bernhard, G. [1 ]
Arola, A. [2 ]
Dahlback, A. [3 ]
Fioletov, V. [4 ]
Heikkila, A. [5 ]
Johnsen, B. [6 ]
Koskela, T. [5 ]
Lakkala, K. [7 ]
Svendby, T. [8 ]
Tamminen, J.
机构
[1] Biospherical Instruments Inc, San Diego, CA 92110 USA
[2] Finnish Meteorol Inst, Kuopio, Finland
[3] Univ Oslo, Dept Phys, Oslo, Norway
[4] Environm Canada, Toronto, ON, Canada
[5] Finnish Meteorol Inst, FIN-00101 Helsinki, Finland
[6] Norwegian Radiat Protect Author, Osteras, Norway
[7] Finnish Meteorol Inst, Arct Res Ctr, Sodankyla, Finland
[8] Norwegian Inst Air Res, Kjeller, Norway
基金
芬兰科学院; 美国国家科学基金会;
关键词
SOLAR ULTRAVIOLET IRRADIANCE; MONITORING INSTRUMENT OMI; EL ARENOSILLO SPAIN; BREWER MEASUREMENTS; QUALITY-ASSURANCE; SPECTRAL ALBEDO; VERSION-2; DATA; SOUTH-POLE; RADIATION; SURFACE;
D O I
10.5194/acp-15-7391-2015
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The Dutch-Finnish Ozone Monitoring Instrument (OMI) on board NASA's Aura spacecraft provides estimates of erythemal (sunburning) ultraviolet (UV) dose rates and erythemal daily doses. These data were compared with ground-based measurements at 13 stations located throughout the Arctic and Scandinavia from 60 to 83 degrees N. The study corroborates results from earlier work, but is based on a longer time series (8 versus 2 years) and considers additional data products, such as the erythemal dose rate at the time of the satellite overpass. Furthermore, systematic errors in satellite UV data resulting from inaccuracies in the surface albedo climatology used in the OMI UV algorithm are systematically assessed. At times when the surface albedo is correctly known, OMI data typically exceed ground-based measurements by 0-11 %. When the OMI albedo climatology exceeds the actual albedo, OMI data may be biased high by as much as 55 %. In turn, when the OMI albedo climatology is too low, OMI data can be biased low by up to 59 %. Such large negative biases may occur when reflections from snow and ice, which increase downwelling UV irradiance, are misinterpreted as reflections from clouds, which decrease the UV flux at the surface. Results suggest that a better OMI albedo climatology would greatly improve the accuracy of OMI UV data products even if year-to-year differences of the actual albedo cannot be accounted for. A pathway for improving the OMI albedo climatology is discussed. Results also demonstrate that ground-based measurements from the center of Greenland, where high, homogenous surface albedo is observed year round, are ideally suited to detect systematic problems or temporal drifts in estimates of surface UV irradiance from space.
引用
收藏
页码:7391 / 7412
页数:22
相关论文
共 50 条
[1]   Influence of desert dust intrusions on ground-based and satellite-derived ultraviolet irradiance in southeastern Spain [J].
Anton, M. ;
Valenzuela, A. ;
Roman, R. ;
Lyamani, H. ;
Krotkov, N. ;
Arola, A. ;
Olmo, F. J. ;
Alados-Arboledas, L. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2012, 117
[2]   Comparison of UV irradiances from Aura/Ozone Monitoring Instrument (OMI) with Brewer measurements at El Arenosillo (Spain) - Part 1: Analysis of parameter influence [J].
Anton, M. ;
Cachorro, V. E. ;
Vilaplana, J. M. ;
Toledano, C. ;
Krotkov, N. A. ;
Arola, A. ;
Serrano, A. ;
de la Morena, B. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2010, 10 (13) :5979-5989
[3]   A new approach to correct for absorbing aerosols in OMI UV [J].
Arola, A. ;
Kazadzis, S. ;
Lindfors, A. ;
Krotkov, N. ;
Kujanpaa, J. ;
Tamminen, J. ;
Bais, A. ;
di Sarra, A. ;
Villaplana, J. M. ;
Brogniez, C. ;
Siani, A. M. ;
Janouch, M. ;
Weihs, P. ;
Webb, A. ;
Koskela, T. ;
Kouremeti, N. ;
Meloni, D. ;
Buchard, V. ;
Auriol, F. ;
Ialongo, I. ;
Staneck, M. ;
Simic, S. ;
Smedley, A. ;
Kinne, S. .
GEOPHYSICAL RESEARCH LETTERS, 2009, 36
[4]   Quality assurance of spectral ultraviolet measurements in Europe through the development of a transportable unit (QASUME) [J].
Bais, AF ;
Blumthaler, M ;
Gröbner, J ;
Seckmeyer, G ;
Webb, AR ;
Gorts, P ;
Koskela, T ;
Rembges, D ;
Kazadzis, S ;
Schreder, J ;
Cotton, P ;
Kelly, P ;
Kouremeti, N ;
Rikkonen, K ;
Studemund, H ;
Tax, R ;
Wuttke, S .
ULTRAVIOLET GROUND- AND SPACE-BASED MEASUREMENTS, MODELS, AND EFFECTS II, 2003, 4896 :232-238
[5]   Comparison of UV irradiance measurements at Summit, Greenland; Barrow, Alaska; and South Pole, Antarctica [J].
Bernhard, G. ;
Booth, C. R. ;
Ehramjian, J. C. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2008, 8 (16) :4799-4810
[6]   Version 2 data of the National Science Foundation's Ultraviolet Radiation Monitoring Network: South Pole [J].
Bernhard, G ;
Booth, CR ;
Ehramjian, JC .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2004, 109 (D21) :D212071-18
[7]   Calculation of total column ozone from global UV spectra at high latitudes [J].
Bernhard, G ;
Booth, CR ;
McPeters, RD .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2003, 108 (D17)
[8]   High levels of ultraviolet radiation observed by ground-based instruments below the 2011 Arctic ozone hole [J].
Bernhard, G. ;
Dahlback, A. ;
Fioletov, V. ;
Heikkila, A. ;
Johnsen, B. ;
Koskela, T. ;
Lakkala, K. ;
Svendby, T. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2013, 13 (21) :10573-10590
[9]   Trends of solar ultraviolet irradiance at Barrow, Alaska, and the effect of measurement uncertainties on trend detection [J].
Bernhard, G. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2011, 11 (24) :13029-13045
[10]   UV climatology at McMurdo Station, Antarctica, based on version 2 data of the National Science Foundation's Ultraviolet Radiation Monitoring Network [J].
Bernhard, G. ;
Booth, C. R. ;
Ehramjian, J. C. ;
Nichol, S. E. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2006, 111 (D11)