An optimized explicit Runge-Kutta-Nystrom method for the numerical solution of orbital and related periodical initial value problems

被引:37
作者
Kosti, A. A. [1 ]
Anastassi, Z. A. [2 ]
Simos, T. E. [1 ,3 ]
机构
[1] Univ Peloponnese, Sci Computat Lab, Dept Comp Sci & Technol, Fac Sci & Technol, GR-22100 Tripolis, Greece
[2] Sch Pedag & Technol Educ ASPETE, Dept Sci, GR-14121 Athens, Greece
[3] King Saud Univ, Coll Sci, Dept Math, Riyadh 11451, Saudi Arabia
关键词
Numerical solution; Initial value problems (IVPs); Explicit methods; Runge-Kutta-Nystrom methods; Dissipative error; Phase-lag;
D O I
10.1016/j.cpc.2011.11.002
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this work a procedure for the construction of an explicit optimized Runge-Kutta-Nystrom method with four stages and fifth algebraic order is provided. The variable coefficients of the preserved method result after nullifying the phase-lag, the dissipative error and the first derivative of the phase-lag. We can see the efficiency of the new method through its local truncation error. Furthermore, we compare the new method's efficiency to other numerical methods. This is shown through the integration of the two-body problem with various eccentricities and of four other initial value problems. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:470 / 479
页数:10
相关论文
共 21 条
[1]  
ACETO L, 2008, J NUMER ANAL IND APP, V3, P181
[2]  
An RT., 2008, J NUMERICAL ANAL IND, V2008
[3]  
[Anonymous], 1967, J. Comput. Phys, DOI DOI 10.1016/0021-9991(67)90046-0
[4]  
[Anonymous], SPECIALIST PERIODICA
[5]  
[Anonymous], 2008, NUMER ANAL IND APPL
[6]  
Chatterjee S., 2008, J NUMERICAL ANAL IND, V3, P193
[7]  
Cooley J. W., 1961, MATH COMPUT, V15, P63
[8]  
Dagnino C., 2008, J NUMERICAL ANAL IND, V3, P211
[9]   FAMILIES OF RUNGE-KUTTA-NYSTROM FORMULAS [J].
DORMAND, JR ;
ELMIKKAWY, MEA ;
PRINCE, PJ .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1987, 7 (02) :235-250
[10]  
Enachescu C., 2008, JNAIAM J NUMERICAL A, V3, P221