The revolution will not be controlled: natural stimuli in speech neuroscience

被引:164
作者
Hamilton, Liberty S. [1 ,2 ]
Huth, Alexander G. [3 ,4 ]
机构
[1] Univ Texas Austin, Moody Coll Commun, Commun Sci & Disorders, Austin, TX 78712 USA
[2] Univ Texas Austin, Dept Neurol, Dell Med Sch, Austin, TX 78712 USA
[3] Univ Texas Austin, Dept Neurosci, Austin, TX 78712 USA
[4] Univ Texas Austin, Dept Comp Sci, Austin, TX 78712 USA
关键词
Natural language; encoding models; fMRI; ECoG; EEG; RECEPTIVE-FIELD; CORTICAL REPRESENTATION; BRAIN; RESPONSES; COMPREHENSION; ORGANIZATION; NEURONS; MODULATION; LANGUAGE; SYSTEM;
D O I
10.1080/23273798.2018.1499946
中图分类号
R36 [病理学]; R76 [耳鼻咽喉科学];
学科分类号
100104 ; 100213 ;
摘要
Humans have a unique ability to produce and consume rich, complex, and varied language in order to communicate ideas to one another. Still, outside of natural reading, the most common methods for studying how our brains process speech or understand language use only isolated words or simple sentences. Recent studies have upset thisstatus quoby employing complex natural stimuli and measuring how the brain responds to language as it is used. In this article we argue that natural stimuli offer many advantages over simplified, controlled stimuli for studying how language is processed by the brain. Furthermore, the downsides of using natural language stimuli can be mitigated using modern statistical and computational techniques.
引用
收藏
页码:573 / 582
页数:10
相关论文
共 77 条
[1]   On-line plasticity in spoken sentence comprehension: Adapting to time-compressed speech [J].
Adank, Patti ;
Devlin, Joseph T. .
NEUROIMAGE, 2010, 49 (01) :1124-1132
[2]   THE SPECTRO-TEMPORAL RECEPTIVE-FIELD - A FUNCTIONAL CHARACTERISTIC OF AUDITORY NEURONS [J].
AERTSEN, AMHJ ;
JOHANNESMA, PIM .
BIOLOGICAL CYBERNETICS, 1981, 42 (02) :133-143
[3]   Nonlinearities and contextual influences in auditory cortical responses modeled with multilinear spectrotemporal methods [J].
Ahrens, Misha B. ;
Linden, Jennifer F. ;
Sahani, Maneesh .
JOURNAL OF NEUROSCIENCE, 2008, 28 (08) :1929-1942
[4]   Predicting Neural Activity Patterns Associated with Sentences Using a Neurobiologically Motivated Model of Semantic Representation [J].
Anderson, Andrew James ;
Binder, Jeffrey R. ;
Fernandino, Leonardo ;
Humphries, Colin J. ;
Conant, Lisa L. ;
Aguilar, Mario ;
Wang, Xixi ;
Doko, Donias ;
Raizada, Rajeev D. S. .
CEREBRAL CORTEX, 2017, 27 (09) :4379-4395
[5]  
[Anonymous], NIST speech disc 1-1.1
[6]   Voice-selective areas in human auditory cortex [J].
Belin, P ;
Zatorre, RJ ;
Lafaille, P ;
Ahad, P ;
Pike, B .
NATURE, 2000, 403 (6767) :309-312
[7]   Neural Tuning to Low-Level Features of Speech throughout the Perisylvian Cortex [J].
Berezutskaya, Julia ;
Freudenburg, Zachary V. ;
Guclu, Umut ;
van Gerven, Marcel A. J. ;
Ramsey, Nick F. .
JOURNAL OF NEUROSCIENCE, 2017, 37 (33) :7906-7920
[8]   Evolution, brain, and the nature of language [J].
Berwick, Robert C. ;
Friederici, Angela D. ;
Chomsky, Noam ;
Bolhuis, Johan J. .
TRENDS IN COGNITIVE SCIENCES, 2013, 17 (02) :89-98
[9]   Brain-to-Brain Synchrony and Learning Outcomes Vary by Student-Teacher Dynamics: Evidence from a Real-world Classroom Electroencephalography Study [J].
Bevilacqua, Dana ;
Davidesco, Ido ;
Wan, Lu ;
Chaloner, Kim ;
Rowland, Jess ;
Ding, Mingzhou ;
Poeppel, David ;
Dikker, Suzanne .
JOURNAL OF COGNITIVE NEUROSCIENCE, 2019, 31 (03) :401-411
[10]   Where Is the Semantic System? A Critical Review and Meta-Analysis of 120 Functional Neuroimaging Studies [J].
Binder, Jeffrey R. ;
Desai, Rutvik H. ;
Graves, William W. ;
Conant, Lisa L. .
CEREBRAL CORTEX, 2009, 19 (12) :2767-2796