Regulation of Cellular Metabolism and Hypoxia by p53

被引:95
作者
Humpton, Timothy J. [1 ]
Vousden, Karen H. [1 ]
机构
[1] CRUK Beatson Inst, Glasgow G61 1BD, Lanark, Scotland
来源
COLD SPRING HARBOR PERSPECTIVES IN MEDICINE | 2016年 / 6卷 / 07期
基金
欧洲研究理事会;
关键词
TUMOR-SUPPRESSOR P53; FATTY-ACID OXIDATION; WILD-TYPE P53; CANCER-CELLS; ANTIOXIDANT FUNCTION; LIPID-METABOLISM; P53-INDUCIBLE REGULATOR; GLUTAMINE-METABOLISM; INSULIN-RESISTANCE; ENERGY HOMEOSTASIS;
D O I
10.1101/cshperspect.a026146
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
The p53 protein is essential for the implementation of the cellular response to challenging environmental conditions. Reacting to stochastic nutrient stress, p53 integrates the activity of key metabolite-sensing pathways to coordinate an appropriate cell response. During starvation, p53 activity augments cell survival pathways, inhibits unnecessary growth, and promotes efficient nutrient generation, utilization, and conservation. Similarly, during oxygen stress, p53 facilitates redirection of cellular metabolism toward energy generation through nonoxidative means, the suppression of reactive oxygen species (ROS) generation, and ROS detoxification-promoting cell survival. However, if adverse conditions are too acute or persistent, p53 can switch roles to implement canonical cell killing. The ability of p53 to regulate metabolism is a powerful feature of p53 biology that can both promote cell survival and act as a check on the inappropriate proliferation of cancer cells.
引用
收藏
页数:20
相关论文
共 147 条
  • [1] Alarcón R, 1999, CANCER RES, V59, P6046
  • [2] p63/p73 in the control of cell cycle and cell death
    Allocati, N.
    Di Ilio, C.
    De Laurenzi, V.
    [J]. EXPERIMENTAL CELL RESEARCH, 2012, 318 (11) : 1285 - 1290
  • [3] Up-regulation of inducible nitric oxide synthase expression in cancer-prone p53 knockout mice
    Ambs, S
    Ogunfusika, MO
    Merriam, WG
    Bennett, WP
    Billiar, TR
    Harris, CC
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (15) : 8823 - 8828
  • [4] Stabilization of wild-type p53 by hypoxia-inducible factor 1α
    An, WG
    Kanekal, M
    Simon, MC
    Maltepe, E
    Blagosklonny, MV
    Neckers, LM
    [J]. NATURE, 1998, 392 (6674) : 405 - 408
  • [5] [Anonymous], 2007, BIOL CANC
  • [6] Requirement of the ATM/p53 Tumor Suppressor Pathway for Glucose Homeostasis
    Armata, Heather L.
    Golebiowski, Diane
    Jung, Dae Young
    Ko, Hwi Jin
    Kim, Jason K.
    Sluss, Hayla K.
    [J]. MOLECULAR AND CELLULAR BIOLOGY, 2010, 30 (24) : 5787 - 5794
  • [7] ROS-Mediated p53 Induction of Lpin1 Regulates Fatty Acid Oxidation in Response to Nutritional Stress
    Assaily, Wissam
    Rubinger, Daniel A.
    Wheaton, Keith
    Lin, Yunping
    Ma, Weili
    Xuan, Wanli
    Brown-Endres, Lauren
    Tsuchihara, Katsuya
    Mak, Tak W.
    Benchimol, Samuel
    [J]. MOLECULAR CELL, 2011, 44 (03) : 491 - 501
  • [8] Hypoxia-Induced Autophagy Is Mediated through Hypoxia-Inducible Factor Induction of BNIP3 and BNIP3L via Their BH3 Domains
    Bellot, Gregory
    Garcia-Medina, Raquel
    Gounon, Pierre
    Chiche, Johanna
    Roux, Daniele
    Pouyssegur, Jacques
    Mazure, Nathalie M.
    [J]. MOLECULAR AND CELLULAR BIOLOGY, 2009, 29 (10) : 2570 - 2581
  • [9] TIGAR, a p53-inducible regulator of glycolysis and apoptosis
    Bensaad, Karim
    Tsuruta, Atsushi
    Selak, Mary A.
    Calvo Vidal, M. Nieves
    Nakano, Katsunori
    Bartrons, Ramon
    Gottlieb, Eyal
    Vousden, Karen H.
    [J]. CELL, 2006, 126 (01) : 107 - 120
  • [10] Regulation of Monocarboxylate Transporter MCT1 Expression by p53 Mediates Inward and Outward Lactate Fluxes in Tumors
    Boidot, Romain
    Vegran, Frederique
    Meulle, Aline
    Le Breton, Aude
    Dessy, Chantal
    Sonveaux, Pierre
    Lizard-Nacol, Sarab
    Feron, Olivier
    [J]. CANCER RESEARCH, 2012, 72 (04) : 939 - 948