Influence of chitosan average molecular weight on degradation and stability of electrodeposited conduits

被引:18
作者
Nawrotek, Katarzyna [1 ]
Tylman, Michal [1 ]
Adamus-Wlodarczyk, Agnieszka [2 ]
Rudnicka, Karolina [3 ]
Gatkowska, Justyna [4 ]
Wieczorek, Marek [5 ]
Wach, Radoslaw [2 ]
机构
[1] Lodz Univ Technol, Fac Proc & Environm Engn, Dept Proc Thermodynam, Wolczanska 213 St, PL-90924 Lodz, Poland
[2] Lodz Univ Technol, Fac Chem, Inst Appl Radiat Chem, Wroblewskiego 15 St, PL-93590 Lodz, Poland
[3] Univ Lodz, Fac Biol & Environm Protect, Dept Immunol & Infect Biol, Banacha 12-16 St, PL-90237 Lodz, Poland
[4] Univ Lodz, Fac Biol & Environm Protect, Dept Immunoparasitol, Banacha 12-16 St, PL-90237 Lodz, Poland
[5] Univ Lodz, Fac Biol & Environm Protect, Dept Neurobiol, Pomorska 141-143 St, PL-90236 Lodz, Poland
关键词
Chitosan; Hydrogel; Electrodeposition; Degradation; Conduit; Peripheral nerve regeneration; BIOCOMPATIBILITY; MEMBRANES; DELIVERY; BEHAVIOR; FTIR; IR;
D O I
10.1016/j.carbpol.2020.116484
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Tubular chitosan-based hydrogels, obtained in an electrodeposition process, are subject of degradation and stability studies. The implants are prepared from polymer with different average molecular weight. This approach allows fabricating structures that vary in mass and wall thickness. The obtained implants are incubated in phosphate buffered solution (pH 7.4) with or without lysozyme up to 56 days at 37 degrees C. Subsequently, chemical, physical as well as mechanical properties of implants are evaluated. Although the initial physicomechanical properties are different, they change upon incubation and remain similar over its period. Finally, in vitro bio-compatibility of implants is proven after assessing their action towards mHippoE-18 embryonic hippocampal cells and THP1-XBlue (TM) monocytes. Since dimensions of nerves and the gap length differ across the body and injury, respectively, the possibility to control properties of chitosan applied gives a tool to prepare implants with wall thickness adjusted to the specific peripheral nerve injury case.
引用
收藏
页数:10
相关论文
共 45 条
[1]   LARGE-SCALE HETEROGENEITIES IN RANDOMLY CROSS-LINKED NETWORKS [J].
BASTIDE, J ;
LEIBLER, L .
MACROMOLECULES, 1988, 21 (08) :2647-2649
[2]   Tissue Engineering and Regenerative Medicine: History, Progress, and Challenges [J].
Berthiaume, Francois ;
Maguire, Timothy J. ;
Yarmush, Martin L. .
ANNUAL REVIEW OF CHEMICAL AND BIOMOLECULAR ENGINEERING, VOL 2, 2011, 2 :403-430
[3]   Electrophoretic deposition of biomaterials [J].
Boccaccini, A. R. ;
Keim, S. ;
Ma, R. ;
Li, Y. ;
Zhitomirsky, I. .
JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2010, 7 :S581-S613
[4]  
Bonferoni MC, 2006, AAPS PHARMSCITECH, V7
[5]   In situ quantitative visualization and characterization of chitosan electrodeposition with paired sidewall electrodes [J].
Cheng, Yi ;
Luo, Xiaolong ;
Betz, Jordan ;
Buckhout-White, Susan ;
Bekdash, Omar ;
Payne, Gregory F. ;
Bentley, William E. ;
Rubloff, Gary W. .
SOFT MATTER, 2010, 6 (14) :3177-3183
[6]   Chitosan: An Update on Potential Biomedical and Pharmaceutical Applications [J].
Cheung, Randy Chi Fai ;
Ng, Tzi Bun ;
Wong, Jack Ho ;
Chan, Wai Yee .
MARINE DRUGS, 2015, 13 (08) :5156-5186
[7]   In vitro degradation and in vivo biocompatibility of chitosan-poly(butylene succinate) fiber mesh scaffolds [J].
Costa-Pinto, Ana R. ;
Martins, Ana M. ;
Castelhano-Carlos, Magda J. ;
Correlo, Vitor M. ;
Sol, Paula C. ;
Longatto-Filho, Adhemar ;
Battacharya, Mrinal ;
Reis, Rui L. ;
Neves, Nuno M. .
JOURNAL OF BIOACTIVE AND COMPATIBLE POLYMERS, 2014, 29 (02) :137-151
[8]  
Czechowska-Biskup R, 2018, PROG CHEM APPL CHITI, V23, P45
[9]   MECHANICAL-PROPERTIES OF BIODEGRADABLE POLYMERS AND COMPOSITES PROPOSED FOR INTERNAL-FIXATION OF BONE [J].
DANIELS, AU ;
CHANG, MKO ;
ANDRIANO, KP ;
HELLER, J .
JOURNAL OF APPLIED BIOMATERIALS, 1990, 1 (01) :57-78
[10]   Chitosan-clay nanocomposites: application as electrochemical sensors [J].
Darder, M ;
Colilla, M ;
Ruiz-Hitzky, E .
APPLIED CLAY SCIENCE, 2005, 28 (1-4) :199-208