A regularity condition and temporal asymptotics for chemotaxis-fluid equations

被引:15
作者
Chae, Myeongju [1 ]
Kang, Kyungkeun [2 ]
Lee, Jihoon [3 ]
Lee, Ki-Ahm [4 ,5 ]
机构
[1] Hankyong Natl Univ, Dept Appl Math, Ansung, South Korea
[2] Yonsei Univ, Dept Math, Seoul, South Korea
[3] Chung Ang Univ, Dept Math, Seoul, South Korea
[4] Seoul Natl Univ, Sch Math Sci, Seoul, South Korea
[5] KIAS, Ctr Math Challenges, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
Chemotaxis-Navier-Stokes; global well-posedness; temporal decay; GLOBAL EXISTENCE; MODEL; SYSTEM;
D O I
10.1088/1361-6544/aa92ec
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider two dimensional chemotaxis equations coupled to the Navier-Stokes equations. We present a new localized regularity criterion that is localized in a neighborhood at each point. Secondly, we establish temporal decays of the regular solutions under the assumption that the initial mass of biological cell density is sufficiently small. Both results are improvements of previously known results given in Chae et al (2013 Discrete Continuous Dyn. Syst. A 33 2271-97) and Chae et al (2014 Commun. PDE 39 1205-35)
引用
收藏
页码:351 / 387
页数:37
相关论文
共 23 条
[1]  
[Anonymous], 2003, DMV
[2]   ASYMPTOTIC BEHAVIORS OF SOLUTIONS FOR AN AEROTAXIS MODEL COUPLED TO FLUID EQUATIONS [J].
Chae, Myeongju ;
Kang, Kyungkeun ;
Lee, Jihoon .
JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2016, 53 (01) :127-146
[3]   Global Existence and Temporal Decay in Keller-Segel Models Coupled to Fluid Equations [J].
Chae, Myeongju ;
Kang, Kyungkeun ;
Lee, Jihoon .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2014, 39 (07) :1205-1235
[4]   EXISTENCE OF SMOOTH SOLUTIONS TO COUPLED CHEMOTAXIS-FLUID EQUATIONS [J].
Chae, Myeongju ;
Kang, Kyungkeun ;
Lee, Jihoon .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2013, 33 (06) :2271-2297
[5]   Sinking, merging and stationary plumes in a coupled chemotaxis-fluid model: a high-resolution numerical approach [J].
Chertock, A. ;
Fellner, K. ;
Kurganov, A. ;
Lorz, A. ;
Markowich, P. A. .
JOURNAL OF FLUID MECHANICS, 2012, 694 :155-190
[6]   GLOBAL EXISTENCE OF WEAK SOLUTIONS FOR A KELLER-SEGEL-FLUID MODEL WITH NONLINEAR DIFFUSION [J].
Chung, Yun-Sung ;
Kang, Kyungkeun ;
Kim, Jaewoo .
JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2014, 51 (03) :635-654
[7]   Global Solutions to the Coupled Chemotaxis-Fluid Equations [J].
Duan, Renjun ;
Lorz, Alexander ;
Markowich, Peter .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2010, 35 (09) :1635-1673
[8]  
Herrero M.A., 1997, ANN SCUOLA NORM-SCI, V24, P633
[9]  
Horstmann D., 2004, JAHRESBER DTSCH MATH, V106, P51
[10]   ON EXPLOSIONS OF SOLUTIONS TO A SYSTEM OF PARTIAL-DIFFERENTIAL EQUATIONS MODELING CHEMOTAXIS [J].
JAGER, W ;
LUCKHAUS, S .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 329 (02) :819-824