Representations of surface groups and right-angled Artin groups in higher rank

被引:5
作者
Wang, Stephen [1 ]
机构
[1] Haverford Coll, Dept Math, Haverford, PA 19104 USA
来源
ALGEBRAIC AND GEOMETRIC TOPOLOGY | 2007年 / 7卷
关键词
D O I
10.2140/agt.2007.7.1099
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give concrete constructions of discrete and faithful representations of right-angled Artin groups into higher-rank Lie groups. Using the geometry of the associated symmetric spaces and the combinatorics of the groups, we find a general criterion for when discrete and faithful representations exist, and show that the criterion is satisfied in particular cases. There are direct applications towards constructing representations of surface groups into higher-rank Lie groups, and, in particular, into lattices in higher-rank Lie groups.
引用
收藏
页码:1099 / 1117
页数:19
相关论文
共 13 条
[1]   Surface group representations with maximal Toledo invariant [J].
Burger, M ;
Iozzi, A ;
Wienhard, A .
COMPTES RENDUS MATHEMATIQUE, 2003, 336 (05) :387-390
[2]  
CHARNEY R, INTRO RIGHT ANGLED A
[3]   CONVEX REAL PROJECTIVE-STRUCTURES ON CLOSED SURFACES ARE CLOSED [J].
CHOI, S ;
GOLDMAN, WM .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 118 (02) :657-661
[4]  
CRISP J, IN PRESS T AM MATH S
[5]  
Crisp J., 2004, ALGEBR GEOM TOPOL, V4, P439
[6]   GEODESIC FLOWS ON NEGATIVELY CURVED MANIFOLDS .2. [J].
EBERLEIN, P .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 178 (APR) :57-82
[7]  
EBERLEIN P, 1994, ANN SCI ECOLE NORM S, V27, P611
[8]  
Eberlein P., 1996, CHICAGO LECT MATH
[9]  
GOLDMAN WM, 1990, J DIFFER GEOM, V31, P791
[10]   LIE-GROUPS AND TEICHMULLER SPACE [J].
HITCHIN, NJ .
TOPOLOGY, 1992, 31 (03) :449-473