Incremental update on sequential patterns in large databases

被引:46
作者
Lin, MY [1 ]
Lee, SY [1 ]
机构
[1] Natl Chiao Tung Univ, Inst Comp Sci & Informat Engn, Hsinchu 30050, Taiwan
来源
TENTH IEEE INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, PROCEEDINGS | 1998年
关键词
D O I
10.1109/TAI.1998.744749
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Mining of sequential patterns in a transactional database is time-consuming due to its complexity. Maintaining present patterns is a non-trivial task after database update, since appended data sequences may invalidate old patterns and create new ones. In contrast to re-mining, the key to improve mining performance in the proposed incremental update algorithm is to effectively utilize the discovered knowledge. By counting over appended data sequences instead of the entire updated database in most cases fast filtering of patterns found in last mining and successive reductions in candidate sequences together make Efficient update on sequential patterns possible.
引用
收藏
页码:24 / 31
页数:8
相关论文
共 13 条
[1]   Parallel mining of association rules [J].
Agrawal, R ;
Shafer, JC .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 1996, 8 (06) :962-969
[2]  
AGRAWAL R, 1995, PROC INT CONF DATA, P3, DOI 10.1109/ICDE.1995.380415
[3]  
Agrawal R., 1996, Advances in Knowledge Discovery and Data Mining, P307
[4]  
[Anonymous], 1995, P 1 SIGKDD INT C KNO
[5]  
Brin S., 1997, SIGMOD Record, V26, P255, DOI [10.1145/253262.253327, 10.1145/253262.253325]
[6]  
CHEUNG DW, 1996, P INT C DAT ENG
[7]  
Han Y., 2021, P420
[8]  
LEE SD, 1997, P 5 INT C DAT SYST A, P185
[9]  
MANNILA H, 1996, P 2 INT C KNOWL DISC, P146
[10]  
Park JS, 1997, IEEE T KNOWL DATA EN, V9, P813, DOI 10.1109/69.634757