Tailoring Indium Oxide Nanocrystal Synthesis Conditions for Air-Stable High-Performance Solution-Processed Thin-Film Transistors

被引:19
|
作者
Swisher, Sarah L. [1 ]
Volkman, Steven K. [1 ]
Subramanian, Vivek [1 ]
机构
[1] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
indium oxide; In2O3; nanocrystal synthesis; thin-film transistor; nanocrystal transistor; printed electronics; solution processing; FIELD-EFFECT TRANSISTORS; LOW-TEMPERATURE; SOL-GEL; ELECTRONICS; SEMICONDUCTORS; NANOPARTICLES; FABRICATION;
D O I
10.1021/acsami.5b00893
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Semiconducting metal oxides (ZnO, SnO2, In2O3, and combinations thereof) are a uniquely interesting family of materials because of their high carrier mobilities in the amorphous and generally disordered states, and solutionprocessed routes to these materials are of particular interest to the printed electronics community. Colloidal nanocrystal routes to these materials are particularly interesting, because nano crystals may be formulated with tunable surface properties into stable inks, and printed to form devices in an additive manner. We report our investigation of an In2O3 nanocrystal synthesis for high-performance solution-deposited semiconductor layers for thin-film transistors (TFTs). We studied the effects of various synthesis parameters on the nanocrystals themselves, and how those changes ultimately impacted the performance of TFTs. Using a sintered film of solution-deposited In2O3 nanocrystals as the TFT channel material, we fabricated devices that exhibit field effect mobility of 10 cm(2)/(V s) and an on/off current ratio greater than 1 x 10(6). These results outperform previous air-stable nariocrystal TFTs, and demonstrate the suitability of colloidal nanocrystal inks for high-performance printed electronics.
引用
收藏
页码:10069 / 10075
页数:7
相关论文
共 50 条
  • [1] High performance solution-processed indium oxide thin-film transistors
    Kim, Hyun Sung
    Byrne, Paul D.
    Facchetti, Antonio
    Marks, Tobin J.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (38) : 12580 - +
  • [2] High performance solution-processed indium oxide thin-film transistors
    Hyun, Sung Kim
    Byrne, Paul D.
    Facchetti, Antonio
    Marks, Tobin J.
    Journal of the American Chemical Society, 2008, 130 (38): : 12580 - 12581
  • [3] Low-Temperature, High-Performance, Solution-Processed Indium Oxide Thin-Film Transistors
    Han, Seung-Yeol
    Herman, Gregory S.
    Chang, Chih-hung
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (14) : 5166 - 5169
  • [4] Air-stable polymer organic thin-film transistors by solution-processed encapsulation
    Fu, Yu
    Tsai, Feng-Yu
    ORGANIC ELECTRONICS, 2011, 12 (01) : 179 - 184
  • [5] High-Performance Solution-Processed Amorphous Zinc-Indium-Tin Oxide Thin-Film Transistors
    Kim, Myung-Gil
    Kim, Hyun Sung
    Ha, Young-Geun
    He, Jiaqing
    Kanatzidis, Mercouri G.
    Facchetti, Antonio
    Marks, Tobin J.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (30) : 10352 - 10364
  • [6] High-Performance Solution-Processed ZrInZnO Thin-Film Transistors
    Phan Trong Tue
    Miyasako, Takaaki
    Li, Jinwang
    Huynh Thi Cam Tu
    Inoue, Satoshi
    Tokumitsu, Eisuke
    Shimoda, Tatsuya
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2013, 60 (01) : 320 - 326
  • [7] Environmentally Stable, Solution-Processed Indium Boron Zinc Oxide Thin-Film Transistors
    Arulkumar, S.
    Parthiban, S.
    Dharmalingam, G.
    Salim, Bindu
    Kwon, J. Y.
    JOURNAL OF ELECTRONIC MATERIALS, 2020, 49 (09) : 5606 - 5612
  • [8] Environmentally Stable, Solution-Processed Indium Boron Zinc Oxide Thin-Film Transistors
    S. Arulkumar
    S. Parthiban
    G. Dharmalingam
    Bindu Salim
    J. Y. Kwon
    Journal of Electronic Materials, 2020, 49 : 5606 - 5612
  • [9] Low Temperature, High-Performance, Solution-Processed Indium Oxide Based Thin Film Transistors
    Han, Seung-Yeol
    Herman, Gregory S.
    Chang, Chih-Hung
    THIN FILM TRANSISTORS 10 (TFT 10), 2010, 33 (05): : 275 - 281
  • [10] Effects of Solution Temperature on Solution-Processed High-Performance Metal Oxide Thin-Film Transistors
    Lee, Keun Ho
    Park, Jee Ho
    Yoo, Young Bum
    Jang, Woo Soon
    Oh, Jin Young
    Chae, Soo Sang
    Moon, Kyeong Ju
    Myoung, Jae Min
    Baik, Hong Koo
    ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (07) : 2585 - 2592