Simplifying monotonicity conditions for entanglement measures

被引:34
作者
Horodecki, M [1 ]
机构
[1] Univ Gdansk, Inst Theoret Phys & Astrophys, PL-80952 Gdansk, Poland
关键词
D O I
10.1007/s11080-005-0920-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that for a convex function the following, rather modest conditions, are equivalent to monotonicity under local operations and classical communication. The conditions are: (i) invariance under local unitaries, (ii) invariance under adding local ancilla in arbitrary state (iii) on mixtures of states possessing local orthogonal flags the function is equal to its average. The result holds for multipartite systems. It is intriguing that the obtained conditions are equalities. The only inequality is hidden in the condition of convexity.
引用
收藏
页码:231 / 237
页数:7
相关论文
共 12 条
[1]  
Bennett CH, 1996, PHYS REV A, V54, P3824, DOI 10.1103/PhysRevA.54.3824
[2]   Dual entanglement measures based on no local cloning and no local deleting [J].
Horodecki, M ;
Sen, A ;
Sen, U .
PHYSICAL REVIEW A, 2004, 70 (05) :052326-1
[3]   Asymptotic manipulations of entanglement can exhibit genuine irreversibility [J].
Horodecki, M ;
Horodecki, P ;
Horodecki, R .
PHYSICAL REVIEW LETTERS, 2000, 84 (19) :4260-4263
[4]   Asymptotic manipulations of entanglement can exhibit genuine irreversibility (vol 84, pg 4260, 2000) [J].
Horodecki, M ;
Horodecki, P ;
Horodecki, R .
PHYSICAL REVIEW LETTERS, 2001, 86 (25) :5844-5844
[5]  
Horodecki M, 2001, QUANTUM INF COMPUT, V1, P3
[6]   Bound entanglement can be activated [J].
Horodecki, P ;
Horodecki, M ;
Horodecki, R .
PHYSICAL REVIEW LETTERS, 1999, 82 (05) :1056-1059
[7]   Separability criterion for density matrices [J].
Peres, A .
PHYSICAL REVIEW LETTERS, 1996, 77 (08) :1413-1415
[8]   Nonadditivity of bipartite distillable entanglement follows from a conjecture on bound entangled Werner states [J].
Shor, PW ;
Smolin, JA ;
Terhal, BM .
PHYSICAL REVIEW LETTERS, 2001, 86 (12) :2681-2684
[9]   Entanglement measures and purification procedures [J].
Vedral, V ;
Plenio, MB .
PHYSICAL REVIEW A, 1998, 57 (03) :1619-1633
[10]   Computable measure of entanglement [J].
Vidal, G ;
Werner, RF .
PHYSICAL REVIEW A, 2002, 65 (03) :1-11