NUMERICAL INTEGRATION FOR HIGH ORDER PYRAMIDAL FINITE ELEMENTS

被引:17
作者
Nigam, Nilima [1 ]
Phillips, Joel [2 ]
机构
[1] Simon Fraser Univ, Dept Math, Burnaby, BC V5A 1S6, Canada
[2] UCL, Dept Math, London WC1E 6BT, England
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2012年 / 46卷 / 02期
基金
英国工程与自然科学研究理事会; 加拿大自然科学与工程研究理事会;
关键词
Finite elements; quadrature; pyramid; EXTERIOR CALCULUS; INTERPOLATION;
D O I
10.1051/m2an/2011042
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We examine the effect of numerical integration on the accuracy of high order conforming pyramidal finite element methods. Non-smooth shape functions are indispensable to the construction of pyramidal elements, and this means the conventional treatment of numerical integration, which requires that the finite element approximation space is piecewise polynomial, cannot be applied. We develop an analysis that allows the finite element approximation space to include non-smooth functions and show that, despite this complication, conventional rules of thumb can still be used to select appropriate quadrature methods on pyramids. Along the way, we present a new family of high order pyramidal finite elements for each of the spaces of the de Rham complex.
引用
收藏
页码:239 / 263
页数:25
相关论文
共 22 条
[1]  
[Anonymous], 1971, Approximate Calculation of Multiple Integrals
[2]  
[Anonymous], 2008, MATH THEORY FINITE E, V105, pA341
[3]  
Arnold DN, 2006, ACT NUMERIC, V15, P1, DOI 10.1017/S0962492906210018
[4]   FINITE ELEMENT EXTERIOR CALCULUS FROM HODGE THEORY TO NUMERICAL STABILITY [J].
Arnold, Douglas N. ;
Falk, Richard S. ;
Winther, Ragnar .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 47 (02) :281-354
[5]   Higher-order Finite Elements for Hybrid Meshes Using New Nodal Pyramidal Elements [J].
Bergot, Morgane ;
Cohen, Gary ;
Durufle, Marc .
JOURNAL OF SCIENTIFIC COMPUTING, 2010, 42 (03) :345-381
[6]   ESTIMATION OF LINEAR FUNCTIONALS ON SOBOLEV SPACES WITH APPLICATION TO FOURIER TRANSFORMS AND SPLINE INTERPOLATION [J].
BRAMBLE, JH ;
HILBERT, SR .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1970, 7 (01) :112-&
[7]  
Ciarlet P.G, 2002, FINITE ELEMENT METHO, DOI DOI 10.1137/1.9780898719208
[8]   A pyramidal element to link hexahedral, prismatic and tetrahedral edge finite elements [J].
Coulomb, JL ;
Zgainski, FX ;
Marechal, Y .
IEEE TRANSACTIONS ON MAGNETICS, 1997, 33 (02) :1362-1365
[9]   H1, H(curl) and H(div)-conforming projection-based interpolation in three dimensions Quasi-optimal p-interpolation estimates [J].
Demkowicz, L ;
Buffa, A .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2005, 194 (2-5) :267-296
[10]  
Demkowicz L., 2007, Computing with hp-Adaptive Finite Elements: Volume 2: Frontiers, V2