On existence of log minimal models II

被引:38
作者
Birkar, Caucher [1 ]
机构
[1] Univ Cambridge, DPMMS, Ctr Math Sci, Cambridge CB3 0WB, England
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2011年 / 658卷
关键词
D O I
10.1515/CRELLE.2011.062
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the existence of log minimal models in dimension d essentially implies the LMMP with scaling in dimension d. As a consequence we prove that a weak nonvanishing conjecture in dimension d implies the minimal model conjecture in dimension d.
引用
收藏
页码:99 / 113
页数:15
相关论文
共 12 条
[1]  
Ambro F., 2003, P STEKLOV I MATH, V240, P220
[2]  
BIRKAR C, ARXIV09042936V1
[3]   On existence of log minimal models [J].
Birkar, Caucher .
COMPOSITIO MATHEMATICA, 2010, 146 (04) :919-928
[4]   Log minimal models according to Shokurov [J].
Birkar, Caucher .
ALGEBRA & NUMBER THEORY, 2009, 3 (08) :951-958
[5]   EXISTENCE OF MINIMAL MODELS FOR VARIETIES OF LOG GENERAL TYPE [J].
Birkar, Caucher ;
Cascini, Paolo ;
Hacon, Christopher D. ;
McKernan, James .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 23 (02) :405-468
[6]  
HACON C, 2007, FLIPS 3 FOLDS 4 FOLD
[7]   Flops connect minimal models [J].
Kawamata, Yujiro .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2008, 44 (02) :419-423
[8]   Letters of a Bi-rationalist. VII Ordered termination [J].
Shokurov, V. V. .
PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2009, 264 (01) :178-200
[9]   3-FOLD LOG FLIPS [J].
SHOKUROV, VV .
RUSSIAN ACADEMY OF SCIENCES IZVESTIYA MATHEMATICS, 1993, 40 (01) :95-202
[10]  
SHOKUROV VV, 1996, HIGHER DIMENSIONAL C, P321