Threshold effects in a two-fermion system on an optical lattice

被引:14
作者
Lakaev, S. N. [1 ]
Abdukhakimov, S. H. [1 ]
机构
[1] Samarkand State Univ, Samarkand, Uzbekistan
关键词
two-fermion system; discrete Schrodinger operator; Hamiltonian; conditionally negativedefinite function; dispersion relation; virtual level; bound state; SCHRODINGER-OPERATORS; DISCRETE SPECTRUM; BOUND-STATES; NUMBER; EIGENVALUES; ASYMPTOTICS; RESONANCES;
D O I
10.1134/S0040577920050074
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For a wide class of two-particle Schrodinger operators H(k) = H-0(k) + V, k is an element of Td, corresponding to a two-fermion system on a d-dimensional cubic integer lattice (d >= 1), we prove that for any value k is an element of Td of the quasimomentum, the discrete spectrum of H(k) below the lower threshold of the essential spectrum is a nonempty set if the following two conditions are satisfied. First, the two-particle operator H(0) corresponding to a zero quasimomentum has either an eigenvalue or a virtual level on the lower threshold of the essential spectrum. Second, the one-particle free (nonperturbed) Schrodinger operator in the coordinate representation generates a semigroup that preserves positivity.
引用
收藏
页码:648 / 663
页数:16
相关论文
共 27 条
[1]   Asymptotics of the discrete spectrum of the three-particle Schrodinger difference operator on a lattice [J].
Abdullaev, JI ;
Lakaev, SN .
THEORETICAL AND MATHEMATICAL PHYSICS, 2003, 136 (02) :1096-1109
[2]   The threshold effects for the two-particle hamiltonians on lattices [J].
Albeverio, S ;
Lakaev, SN ;
Makarov, KA ;
Muminov, ZI .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 262 (01) :91-115
[3]  
Albeverio S, 2004, ANN HENRI POINCARE, V5, P743, DOI [10.1007/S00023-004-0181-9, 10.1007/s00023-004-0181-9]
[4]  
Albeverio S, 2012, MARKOV PROCESS RELAT, V18, P387
[5]   A CLASS OF EXACTLY SOLVABLE 3-BODY QUANTUM-MECHANICAL PROBLEMS AND THE UNIVERSAL LOW-ENERGY BEHAVIOR [J].
ALBEVERIO, S ;
HOEGHKROHN, R ;
WU, TT .
PHYSICS LETTERS A, 1981, 83 (03) :105-109
[6]  
Albeverio S., 1982, Ann. Inst. Henri Poincare A, V37, P1
[7]   Bounds on the discrete spectrum of lattice Schrodinger operators [J].
Bach, V. ;
de Siqueira Pedra, W. ;
Lakaev, S. N. .
JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (02)
[8]   Energy-momentum spectrum of some two-particle lattice Schrodinger Hamiltonians [J].
da Veiga, PAF ;
Ioriatti, L ;
O'Carroll, M .
PHYSICAL REVIEW E, 2002, 66 (01)
[9]   High-temperature superfluidity of fermionic atoms in optical lattices [J].
Hofstetter, W ;
Cirac, JI ;
Zoller, P ;
Demler, E ;
Lukin, MD .
PHYSICAL REVIEW LETTERS, 2002, 89 (22)
[10]   COUPLING-CONSTANT THRESHOLDS IN NON-RELATIVISTIC QUANTUM-MECHANICS .1. SHORT-RANGE 2-BODY CASE [J].
KLAUS, M ;
SIMON, B .
ANNALS OF PHYSICS, 1980, 130 (02) :251-281