Photocatalytic decomposition of graphene over a ZnO surface under UV irradiation

被引:8
作者
Mun, Dae-Hwa [1 ]
Lee, Hyun Jung [1 ]
Bae, Sukang [1 ]
Kim, Tea-Wook [1 ,2 ]
Lee, Sang Hyun [1 ,2 ]
机构
[1] Korea Inst Sci & Technol, Inst Adv Composite Mat, Wonju 565905, Jeollabuk Do, South Korea
[2] Korea Univ Sci & Technol UST, Dept Nanomat & Nano Sci, Taejon 305350, South Korea
关键词
NITROGEN-DOPED GRAPHENE; TIO2;
D O I
10.1039/c5cp01670c
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Highly reactive radicals or chemicals are generated on the surfaces of oxide semiconductors via reactions between photo-induced charges and ambient gas molecules. These radicals or chemicals have been utilized in heterogeneous photosynthesis and photocatalysis. In this study, we demonstrated that the photocatalytic reactions on the surface of ZnO promoted the oxidation and decomposition of graphene. Raman spectra were used to analyze the evolution of the G and 2D peaks. The oxidation of graphene on a ZnO substrate by UV radiation was faster than that in the absence of ZnO. During oxidation, the resistivity and the transmittance of graphene also increased. The XPS results showed that functional groups related to the oxidation of graphene were formed during the photocatalytic reactions. This simple and clean approach will be also effective for selective surface modification by enhancing the surface chemical reactions that pattern graphene via oxidation.
引用
收藏
页码:15683 / 15686
页数:4
相关论文
共 24 条
[1]   Honeycomb Carbon: A Review of Graphene [J].
Allen, Matthew J. ;
Tung, Vincent C. ;
Kaner, Richard B. .
CHEMICAL REVIEWS, 2010, 110 (01) :132-145
[2]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/nnano.2010.132, 10.1038/NNANO.2010.132]
[3]  
Bai JW, 2010, NAT NANOTECHNOL, V5, P190, DOI [10.1038/NNANO.2010.8, 10.1038/nnano.2010.8]
[4]   Kinetic study on photocatalytic degradation of CI Acid Yellow 23 by ZnO photocatalyst [J].
Behnajady, M. A. ;
Modirshahla, N. ;
Hamzavi, R. .
JOURNAL OF HAZARDOUS MATERIALS, 2006, 133 (1-3) :226-232
[5]   Impermeable atomic membranes from graphene sheets [J].
Bunch, J. Scott ;
Verbridge, Scott S. ;
Alden, Jonathan S. ;
van der Zande, Arend M. ;
Parpia, Jeevak M. ;
Craighead, Harold G. ;
McEuen, Paul L. .
NANO LETTERS, 2008, 8 (08) :2458-2462
[6]   Raman spectrum of graphene and graphene layers [J].
Ferrari, A. C. ;
Meyer, J. C. ;
Scardaci, V. ;
Casiraghi, C. ;
Lazzeri, M. ;
Mauri, F. ;
Piscanec, S. ;
Jiang, D. ;
Novoselov, K. S. ;
Roth, S. ;
Geim, A. K. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)
[7]   HETEROGENEOUS PHOTOCATALYTIC OXIDATION OF AROMATIC-COMPOUNDS ON TIO2 [J].
FUJIHIRA, M ;
SATOH, Y ;
OSA, T .
NATURE, 1981, 293 (5829) :206-208
[8]   Making Graphene Luminescent by Oxygen Plasma Treatment [J].
Gokus, T. ;
Nair, R. R. ;
Bonetti, A. ;
Boehmler, M. ;
Lombardo, A. ;
Novoselov, K. S. ;
Geim, A. K. ;
Ferrari, A. C. ;
Hartschuh, A. .
ACS NANO, 2009, 3 (12) :3963-3968
[9]   Energy band-gap engineering of graphene nanoribbons [J].
Han, Melinda Y. ;
Oezyilmaz, Barbaros ;
Zhang, Yuanbo ;
Kim, Philip .
PHYSICAL REVIEW LETTERS, 2007, 98 (20)
[10]   UV/Ozone-Oxidized Large-Scale Graphene Platform with Large Chemical Enhancement in Surface-Enhanced Raman Scattering [J].
Huh, Sung ;
Park, Jaesung ;
Kim, Young Soo ;
Kim, Kwang S. ;
Hong, Byung Hee ;
Nam, Jwa-Min .
ACS NANO, 2011, 5 (12) :9799-9806