Synchronization of the Glycolysis Reaction-Diffusion Model via Linear Control Law

被引:12
作者
Ouannas, Adel [1 ]
Batiha, Iqbal M. [2 ,3 ]
Bekiros, Stelios [4 ,5 ]
Liu, Jinping [6 ]
Jahanshahi, Hadi [7 ]
Aly, Ayman A. [8 ]
Alghtani, Abdulaziz H. [8 ]
机构
[1] Univ Larbi Ben Mhidi, Lab Dynam Syst & Control, Oum El Bouaghi 04000, Algeria
[2] Irbid Natl Univ, Fac Sci & Technol, Dept Math, Irbid 2600, Jordan
[3] Ajman Univ, Nonlinear Dynam Res Ctr NDRC, Ajman 346, U Arab Emirates
[4] Univ Malta, Dept Banking & Finance, FEMA, MSD-2080 Msida, Malta
[5] London Sch Econ & Polit Sci, Dept Hlth Policy, LSE Hlth, London WC2A 2AE, England
[6] Hunan Normal Univ, Hunan Prov Key Lab Intelligent Comp & Language In, Changsha 410081, Peoples R China
[7] Univ Manitoba, Dept Mech Engn, Winnipeg, MB R3T 5V6, Canada
[8] Taif Univ, Coll Engn, Dept Mech Engn, POB 11099, At Taif 21944, Saudi Arabia
关键词
synchronization; linear control; asymptotic stability; reaction-diffusion model; lyapunov function; Selkov system; glycolysis system; ORDER CHAOTIC SYSTEMS; OSCILLATIONS;
D O I
10.3390/e23111516
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Selkov system, which is typically employed to model glycolysis phenomena, unveils some rich dynamics and some other complex formations in biochemical reactions. In the present work, the synchronization problem of the glycolysis reaction-diffusion model is handled and examined. In addition, a novel convenient control law is designed in a linear form and, on the other hand, the stability of the associated error system is demonstrated through utilizing a suitable Lyapunov function. To illustrate the applicability of the proposed schemes, several numerical simulations are performed in one- and two-spatial dimensions.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Synchronization of FitzHugh-Nagumo reaction-diffusion systems via one-dimensional linear control law
    Ouannas, Adel
    Mesdoui, Fatiha
    Momani, Shaher
    Batiha, Iqbal
    Grassi, Giuseppe
    ARCHIVES OF CONTROL SCIENCES, 2021, 31 (02) : 333 - 345
  • [2] Synchronization of stochastic reaction-diffusion systems via boundary control
    Wu, Kai-Ning
    Wang, Jian
    Lim, Cheng-Chew
    NONLINEAR DYNAMICS, 2018, 94 (03) : 1763 - 1773
  • [3] Adaptive synchronization of delayed reaction-diffusion FCNNs via learning control approach
    Zhang, Weiyuan
    Xing, Keyi
    Li, Junmin
    Chen, Minglai
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2015, 28 (01) : 141 - 150
  • [4] Synchronization of delayed reaction-diffusion neural networks via an adaptive learning control approach
    Li, Junmin
    Zhang, Weiyuan
    Chen, Minglai
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 65 (11) : 1775 - 1785
  • [5] Local Stability, Global Stability, and Simulations in a Fractional Discrete Glycolysis Reaction-Diffusion Model
    Hamadneh, Tareq
    Hioual, Amel
    Alsayyed, Omar
    AL-Khassawneh, Yazan Alaya
    Al-Husban, Abdallah
    Ouannas, Adel
    FRACTAL AND FRACTIONAL, 2023, 7 (08)
  • [6] General Methods to Synchronize Fractional Discrete Reaction-Diffusion Systems Applied to the Glycolysis Model
    Hamadneh, Tareq
    Hioual, Amel
    Saadeh, Rania
    Abdoon, Mohamed A.
    Almutairi, Dalal Khalid
    Khalid, Thwiba A.
    Ouannas, Adel
    FRACTAL AND FRACTIONAL, 2023, 7 (11)
  • [7] Explicit control law of a coupled reaction-diffusion process
    He, Cuihua
    Xie, Chengkang
    Zhen, Zhiyuan
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2017, 354 (05): : 2087 - 2101
  • [8] Synchronization of fractional-order reaction-diffusion neural networks via mixed boundary control
    Sun, Yuting
    Hu, Cheng
    Yu, Juan
    Shi, Tingting
    APPLIED MATHEMATICS AND COMPUTATION, 2023, 450
  • [9] Exponential synchronization of reaction-diffusion neural networks via switched event-triggered control
    Zhang, Chuan
    Wu, Huaining
    Han, Xiang
    Zhang, Xianfu
    INFORMATION SCIENCES, 2023, 648
  • [10] Synchronization of fuzzy reaction-diffusion neural networks via semi-intermittent hybrid control
    Kathiresan, S.
    Kashkynbayev, Ardak
    Mohanrasu, S. S.
    Rajan, Rakkiyappan
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2025, 71 (01) : 1109 - 1139