Research on Classification of Pest and Disease Tree Samples Based on Hyperspectral Lidar

被引:1
|
作者
Lu Jing [1 ,2 ]
Chen Jiuying [1 ,2 ]
Li Wei [1 ]
Zhou Mei [1 ]
Hu Jian [1 ]
Tian Wenxin [1 ]
Li Chuanrong [1 ]
机构
[1] Chinese Acad Sci, Key Lab Quantitat Remote Sensing Informat Technol, Aerosp Informat Res Inst, Beijing 100094, Peoples R China
[2] Chinese Acad Sci, Coll Optoelect, Beijing 100049, Peoples R China
关键词
remote sensing; hyperspectral lidar; tree pests and diseases; support vector machine; parameter selection; signal processing;
D O I
10.3788/LOP202158.1628004
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this study, a set of tunable hyperspectral lidar system with 91 channels, spectral resolution of 5 nm, wavelength range of 650-1100 nm, and high biological safety is built, and the detection experiments of forest tree samples such as Ailanthus altissima, Pinus yunnanensis, and Koelreuteria paniculata are completed. The target echo intensity is detected through experiments, and the target spectral reflectance is obtained. Finally, the support vector machine classifier is used to classify and identify different types of healthy and diseased samples. The classification accuracy of Ailanthus altissima samples can reach 96. 98%. The classification accuracy of Pinus yunnanensis samples can reach 91.21%, and the classification accuracy of Koelreuteria paniculata samples can reach 66. 21%. The experimental results have research significance and reference value, and provide a new development direction for forestry pest monitoring.
引用
收藏
页数:7
相关论文
共 17 条
  • [1] Two-channel Hyperspectral LiDAR with a Supercontinuum Laser Source
    Chen, Yuwei
    Raikkonen, Esa
    Kaasalainen, Sanna
    Suomalainen, Juha
    Hakala, Teemu
    Hyyppa, Juha
    Chen, Ruizhi
    [J]. SENSORS, 2010, 10 (07): : 7057 - 7066
  • [2] ChenX Y., 2019, J LASER OPTOELECTRON, V56, P12
  • [3] CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411
  • [4] DaiY J, 2002, PRINCIPLESOF LIDAR
  • [5] Du M, 2001, DEVELOPINGLIDARJ MOD, P32
  • [6] Target Segmentation Method for Three-Dimensional LiDAR Point Cloud Based on Depth Image
    Fan Xiaohui
    Xu Guoliang
    Li Wanlin
    Wang Qianzhu
    Chang Liangliang
    [J]. CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG, 2019, 46 (07):
  • [7] Feng W, 2009, CHINESE AGR SCI B, V23, P192
  • [8] Fu Y., 2010, J COMPUTER KNOWLEDGE, V6, P28
  • [9] HuY W., 2020, J CHINESE J LASERS, V475
  • [10] Li C R., 2014, UAV REMOTE SENSING L