Novel material for super high efficiency multi-junction solar cells

被引:31
作者
Ohshita, Y. [1 ]
Suzuki, H. [2 ]
Kojima, N. [1 ]
Tanaka, T. [1 ]
Honda, T. [1 ]
Inagaki, M. [1 ]
Yamaguchi, M. [1 ]
机构
[1] Toyota Technol Inst, Tempaku Ku, Nagoya, Aichi 4688511, Japan
[2] Miyazaki Univ, Miyazaki 8892192, Japan
关键词
Defects; Chemical beam epitaxy; Alloys; Semiconducting III-V materials; Solar cells; MOLECULAR-BEAM EPITAXY; GAINNAS; LAYER;
D O I
10.1016/j.jcrysgro.2010.11.082
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
For realizing a future four-junction solar cell InGaP/GaAs/InGaAsN/Ge with high conversion efficiency of over 40% (AM1.5G), we are developing the chemical beam epitaxy (CBE) technology to grow high-quality InGaAsN. This diluted nitride will be used as a third cell material, because it can be grown on Ge with lattice matching and a 1.0 eV band gap. However, due to the small amount of N incorporated into the GaAs (or InGaAs) crystal, the diffusion length becomes too short to fabricate the tandem solar cells with the high performance we expect. The films in the CBE process are grown using organic gas molecules as sources under high vacuum conditions (10(-2) Pa). Because of the ultra-low pressure, the reactions between the source-gas molecules in the gas phase are suppressed and the reactions only occur on the growing surface. This allows the use of active source gases that decompose at low temperatures. The CBE growth technique produces high quality GaAsN. The lower TEGa flow rate is one of the most important factors to obtain low residual impurities, higher mobility (Hall hole mobility), and longer lifetime (Photoluminescence lifetime). (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:328 / 331
页数:4
相关论文
共 12 条
[1]   1-eV solar cells with GaInNAs active layer [J].
Friedman, DJ ;
Geisz, JF ;
Kurtz, SR ;
Olson, JM .
JOURNAL OF CRYSTAL GROWTH, 1998, 195 (1-4) :409-415
[2]   Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight [J].
Guter, Wolfgang ;
Schoene, Jan ;
Philipps, Simon P. ;
Steiner, Marc ;
Siefer, Gerald ;
Wekkeli, Alexander ;
Welser, Elke ;
Oliva, Eduard ;
Bett, Andreas W. ;
Dimroth, Frank .
APPLIED PHYSICS LETTERS, 2009, 94 (22)
[3]   Recombination mechanisms in GaInNAs/GaAs multiple quantum wells [J].
Kaschner, A ;
Lüttgert, T ;
Born, H ;
Hoffmann, A ;
Egorov, AY ;
Riechert, H .
APPLIED PHYSICS LETTERS, 2001, 78 (10) :1391-1393
[4]   Minority carrier diffusion and defects in InGaAsN grown by molecular beam epitaxy [J].
Kurtz, SR ;
Klem, JF ;
Allerman, AA ;
Sieg, RM ;
Seager, CH ;
Jones, ED .
APPLIED PHYSICS LETTERS, 2002, 80 (08) :1379-1381
[5]   DISORDER SCATTERING IN SOLID-SOLUTIONS OF III-V SEMICONDUCTING COMPOUNDS [J].
MAKOWSKI, L ;
GLICKSMAN, M .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 1973, 34 (03) :487-492
[6]   P-type doping characteristics of GaInNAs:Be grown by solid source molecular beam epitaxy [J].
Matsuura, T ;
Miyamoto, T ;
Makino, S ;
Ohta, M ;
Matsui, Y ;
Koyama, F .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS & EXPRESS LETTERS, 2004, 43 (4A) :L433-L435
[7]   Electrical properties of GaAsN film grown by chemical beam epitaxy [J].
Nishimura, K. ;
Suzuki, H. ;
Saito, K. ;
Ohshita, Y. ;
Kojima, N. ;
Yamaguchi, M. .
PHYSICA B-CONDENSED MATTER, 2007, 401 (343-346) :343-346
[8]   Interband optical absorption in free standing layer of Ga0.96In0.04As0.99N0.01 [J].
Perlin, P ;
Wisniewski, P ;
Skierbiszewski, C ;
Suski, T ;
Kaminska, E ;
Subramanya, SG ;
Weber, ER ;
Mars, DE ;
Walukiewicz, W .
APPLIED PHYSICS LETTERS, 2000, 76 (10) :1279-1281
[9]   A comparison of MBE- and MOCVD-grown GaInNAs [J].
Ptak, AJ ;
Johnston, SW ;
Kurtz, S ;
Friedman, DJ ;
Metzger, WK .
JOURNAL OF CRYSTAL GROWTH, 2003, 251 (1-4) :392-398
[10]   Hydrogen reduction in GaAsN thin films by flow rate modulated chemical beam epitaxy [J].
Saito, K. ;
Nishimura, K. ;
Suzuki, H. ;
Ohshita, Y. ;
Yamaguchi, M. .
THIN SOLID FILMS, 2008, 516 (11) :3517-3520