Local bandwidth selectors for deconvolution kernel density estimation

被引:7
作者
Achilleos, Achilleas [2 ]
Delaigle, Aurore [1 ]
机构
[1] Univ Melbourne, Dept Math & Stat, Melbourne, Vic 3010, Australia
[2] Univ Bristol, Dept Math, Bristol BS8 1TW, Avon, England
基金
澳大利亚研究理事会;
关键词
Contaminated data; Data-driven bandwidth; EBBS; Errors-in-variables; Kernel smoothing; Measurement errors; Plug-in; Smoothing parameter; DATA-BASED ALGORITHM; CONTAMINATED SAMPLE; MEASUREMENT ERROR; SIMULATION-EXTRAPOLATION; OPTIMAL RATES; WINDOW WIDTH; CHOICE; DERIVATIVES; REGRESSION; POINT;
D O I
10.1007/s11222-011-9247-y
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider kernel density estimation when the observations are contaminated by measurement errors. It is well-known that the success of kernel estimators depends heavily on the choice of a smoothing parameter called the bandwidth. A number of data-driven bandwidth selectors exist, but they are all global. Such techniques are appropriate when the density is relatively simple, but local bandwidth selectors can be more attractive in more complex settings. We suggest several data-driven local bandwidth selectors and illustrate via simulations the significant improvement they can bring over a global bandwidth.
引用
收藏
页码:563 / 577
页数:15
相关论文
共 41 条
[32]   A new characterization and estimation of the zero-bias bandwidth [J].
Sain, SR .
AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2003, 45 (01) :29-42
[33]   ADAPTIVE BANDWIDTH CHOICE FOR KERNEL REGRESSION [J].
SCHUCANY, WR .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1995, 90 (430) :535-540
[34]   A DATA-BASED ALGORITHM FOR CHOOSING THE WINDOW WIDTH WHEN ESTIMATING THE DENSITY AT A POINT [J].
SHEATHER, S .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1983, 1 (04) :229-238
[35]   AN IMPROVED DATA-BASED ALGORITHM FOR CHOOSING THE WINDOW WIDTH WHEN ESTIMATING THE DENSITY AT A POINT [J].
SHEATHER, SJ .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1986, 4 (01) :61-65
[36]  
SHEATHER SJ, 1991, J ROY STAT SOC B, V53, P683
[37]   Density estimation in the presence of heteroscedastic measurement error [J].
Staudenmayer, John ;
Ruppert, David ;
Buonaccorsi, John R. .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2008, 103 (482) :726-736
[38]   Simulation-extrapolation: The measurement error jackknife [J].
Stefanski, LA ;
Cook, JR .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1995, 90 (432) :1247-1256
[39]  
Stefanski LA, 1990, Statistics, V21, P169, DOI DOI 10.1080/02331889008802238
[40]   Estimating smooth distribution function in the presence of heteroscedastic measurement errors [J].
Wang, Xiao-Feng ;
Fan, Zhaozhi ;
Wang, Bin .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2010, 54 (01) :25-36