Local bandwidth selectors for deconvolution kernel density estimation

被引:7
作者
Achilleos, Achilleas [2 ]
Delaigle, Aurore [1 ]
机构
[1] Univ Melbourne, Dept Math & Stat, Melbourne, Vic 3010, Australia
[2] Univ Bristol, Dept Math, Bristol BS8 1TW, Avon, England
基金
澳大利亚研究理事会;
关键词
Contaminated data; Data-driven bandwidth; EBBS; Errors-in-variables; Kernel smoothing; Measurement errors; Plug-in; Smoothing parameter; DATA-BASED ALGORITHM; CONTAMINATED SAMPLE; MEASUREMENT ERROR; SIMULATION-EXTRAPOLATION; OPTIMAL RATES; WINDOW WIDTH; CHOICE; DERIVATIVES; REGRESSION; POINT;
D O I
10.1007/s11222-011-9247-y
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider kernel density estimation when the observations are contaminated by measurement errors. It is well-known that the success of kernel estimators depends heavily on the choice of a smoothing parameter called the bandwidth. A number of data-driven bandwidth selectors exist, but they are all global. Such techniques are appropriate when the density is relatively simple, but local bandwidth selectors can be more attractive in more complex settings. We suggest several data-driven local bandwidth selectors and illustrate via simulations the significant improvement they can bring over a global bandwidth.
引用
收藏
页码:563 / 577
页数:15
相关论文
共 41 条
[1]  
ACHILLEOS A, 2011, SUPPLEMENTARY FILE P
[2]  
[Anonymous], 1996, Local polynomial modelling and its applications
[3]   LOCALLY ADAPTIVE BANDWIDTH CHOICE FOR KERNEL REGRESSION-ESTIMATORS [J].
BROCKMANN, M ;
GASSER, T ;
HERRMANN, E .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1993, 88 (424) :1302-1309
[4]   Minimax estimation of the noise level and of the deconvolution density in a semiparametric convolution model [J].
Butucea, C ;
Matias, C .
BERNOULLI, 2005, 11 (02) :309-340
[5]  
Carroll J., 2006, MEASUREMENT ERROR NO, V2nd edn, DOI [10.1201/9781420010138, DOI 10.1201/9781420010138]
[6]   OPTIMAL RATES OF CONVERGENCE FOR DECONVOLVING A DENSITY [J].
CARROLL, RJ ;
HALL, P .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1988, 83 (404) :1184-1186
[7]   SIMULATION-EXTRAPOLATION ESTIMATION IN PARAMETRIC MEASUREMENT ERROR MODELS [J].
COOK, JR ;
STEFANSKI, LA .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1994, 89 (428) :1314-1328
[8]   Frequent problems in calculating integrals and optimizing objective functions: a case study in density deconvolution [J].
Delaigle, A. ;
Gijbels, I. .
STATISTICS AND COMPUTING, 2007, 17 (04) :349-355
[9]  
Delaigle A, 2006, STAT SINICA, V16, P773
[10]   Bootstrap bandwidth selection in kernel density estimation from a contaminated sample [J].
Delaigle, A ;
Gijbels, I .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2004, 56 (01) :19-47