Unraveling the selectivity puzzle of H2 evolution over CO2 photoreduction using ZnS nanocatalysts with phase junction

被引:28
作者
Li, Pan [1 ,2 ]
Luo, Gan [2 ]
Zhu, Shuang [1 ,3 ]
Guo, Lingju [1 ]
Qu, Peng [2 ]
He, Tao [1 ,3 ]
机构
[1] Natl Ctr Nanosci & Technol, CAS Ctr Excellence Nanosci, CAS Key Lab Nanosyst & Hierarch Fabricat, Beijing 100190, Peoples R China
[2] Shangqiu Normal Univ, Coll Chem & Chem Engn, Henan Engn Ctr New Energy Battery Mat, Henan D&A Engn Ctr Adv Battery Mat, Shangqiu 476000, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Phase junction; CO2; photoreduction; H-2; evolution; adsorption/desorption; Gibbs free energy; TOTAL-ENERGY CALCULATIONS; CARBON-DIOXIDE; PHOTOCATALYTIC ACTIVITY; SEMICONDUCTOR PHOTOCATALYSIS; REDUCTION; SURFACE; NANOCRYSTALLITES; CONVERSION; FORMATE; CHALLENGES;
D O I
10.1016/j.apcatb.2020.119115
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Catalytic reduction of CO2 is usually accompanied by competitive H-2 evolution. However, the selectivity between CO2 reduction and H-2 evolution is not completely understood hitherto. Here ZnS is chosen as the model catalyst to study this and are prepared by hydrothermal treatment of ZnS(en)(0)(.5) precursor. ZnS nanoparticles exhibit high production yield of solar fuels due to the formation of internal Sphalerite-Wurtzite phase junction within a single particle. The predominant product of H-2 can reach a yield as high as 31.5 mmol/g-cat after 4-h reaction, meanwhile with a high CO yield of 279.3 mu mol/g-cat. The mechanism is proposed from both dynamic (adsorption/desorption of reactants/products) and thermodynamic (redox potential, change in Gibbs free energy of key intermediates) point of view. This work not only provides useful information on the reaction selectivity between CO2 reduction and H-2 evolution, but also pave a way to adjust the yield of a specific product upon photocatalysis.
引用
收藏
页数:7
相关论文
共 52 条
[1]   Design and construction of the BESIII detector [J].
Ablikim, M. ;
An, Z. H. ;
Bai, J. Z. ;
Berger, Niklaus ;
Bian, J. M. ;
Cai, X. ;
Cao, G. F. ;
Cao, X. X. ;
Chang, J. F. ;
Chen, C. ;
Chen, G. ;
Chen, H. C. ;
Chen, H. X. ;
Chen, J. ;
Chen, J. C. ;
Chen, L. P. ;
Chen, P. ;
Chen, X. H. ;
Chen, Y. B. ;
Chen, M. L. ;
Chu, Y. P. ;
Cui, X. Z. ;
Dai, H. L. ;
Deng, Z. Y. ;
Dong, M. Y. ;
Du, S. X. ;
Du, Z. Z. ;
Fang, J. ;
Fu, C. D. ;
Gao, C. S. ;
Gong, M. Y. ;
Gong, W. X. ;
Gu, S. D. ;
Guan, B. J. ;
Guan, J. ;
Guo, Y. N. ;
Han, J. F. ;
He, K. L. ;
He, M. ;
He, X. ;
Heng, Y. K. ;
Hou, Z. L. ;
Hu, H. M. ;
Hu, T. ;
Huang, B. ;
Huang, J. ;
Huang, S. K. ;
Huang, Y. P. ;
Ji, Q. ;
Ji, X. B. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2010, 614 (03) :345-399
[2]  
[Anonymous], 101 NIST
[3]   Photoreduction of carbon dioxide using strontium zirconate nanoparticles [J].
Ashiq, Muhammad Naeem ;
Wang, Yanjie ;
Ehsan, Muhammad Fahad ;
He, Tao .
SCIENCE CHINA-MATERIALS, 2015, 58 (08) :634-639
[4]   Zinc sulfide functionalized with ruthenium nanoparticles for photocatalytic reduction of CO2 [J].
Baran, Tomasz ;
Wojtyla, Szymon ;
Dibenedetto, Angela ;
Aresta, Michele ;
Macyk, Wojciech .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2015, 178 :170-176
[5]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[6]   CO2 photo-reduction: insights into CO2 activation and reaction on surfaces of photocatalysts [J].
Chang, Xiaoxia ;
Wang, Tuo ;
Gong, Jinlong .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (07) :2177-2196
[7]   Photocatalytically reducing CO2 to methyl formate in methanol over ZnS and Ni-doped ZnS photocatalysts [J].
Chen, Jingshuai ;
Xin, Feng ;
Qin, Shiyue ;
Yin, Xiaohong .
CHEMICAL ENGINEERING JOURNAL, 2013, 230 :506-512
[8]   AN ALL-ELECTRON NUMERICAL-METHOD FOR SOLVING THE LOCAL DENSITY FUNCTIONAL FOR POLYATOMIC-MOLECULES [J].
DELLEY, B .
JOURNAL OF CHEMICAL PHYSICS, 1990, 92 (01) :508-517
[9]   Structure-directing coordination template effect of ethylenediamine in formations of ZnS and ZnSe nanocrystallites via solvothermal route [J].
Deng, ZX ;
Wang, C ;
Sun, XM ;
Li, YD .
INORGANIC CHEMISTRY, 2002, 41 (04) :869-873
[10]   Defect Engineering and Phase Junction Architecture of Wide-Bandgap ZnS for Conflicting Visible Light Activity in Photocatalytic H2 Evolution [J].
Fang, Zhibin ;
Weng, Sunxian ;
Ye, Xinxin ;
Feng, Wenhui ;
Zheng, Zuyang ;
Lu, Meiliang ;
Lin, Sen ;
Fu, Xianzhi ;
Liu, Ping .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (25) :13915-13924