Coherent-state path integrals in the continuum: The SU(2) case

被引:9
作者
Kordas, G. [1 ]
Kalantzis, D. [1 ]
Karanikas, A. I. [1 ]
机构
[1] Univ Athens, Dept Phys, GR-15771 Athens, Greece
关键词
Spin coherent states; Path integrals; Spin models; SEMICLASSICAL APPROXIMATIONS; FIELD; LIMIT; MODEL;
D O I
10.1016/j.aop.2016.05.012
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We define the time-continuous spin coherent-state path integral in a way that is free from inconsistencies. The proposed definition is used to reproduce known exact results. Such a formalism opens new possibilities for applying approximations with improved accuracy and can be proven useful in a great variety of problems where spin Hamiltonians are used. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:226 / 237
页数:12
相关论文
共 33 条
[1]   Semiclassical approximations in phase space with coherent states [J].
Baranger, M ;
de Aguiar, MAM ;
Keck, F ;
Korsch, HJ ;
Schellhaass, B .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (36) :7227-7286
[2]   Instanton picture of the spin tunnelling in the Lipkin-Meshkov-Glick model [J].
Belinicher, VI ;
Providencia, C ;
daProvidencia, J .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (16) :5633-5643
[3]  
Berezin F. A., 1980, SOV PHYS USP, V23, P763
[4]   MAGNETIC-FIELD DEPENDENCE OF THE TUNNELING SPLITTING OF QUANTUM SPINS [J].
ENZ, M ;
SCHILLING, R .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1986, 19 (30) :L711-L715
[5]   SPIN TUNNELING IN THE SEMICLASSICAL LIMIT [J].
ENZ, M ;
SCHILLING, R .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1986, 19 (11) :1765-1770
[6]   AN OPERATOR CALCULUS HAVING APPLICATIONS IN QUANTUM ELECTRODYNAMICS [J].
FEYNMAN, RP .
PHYSICAL REVIEW, 1951, 84 (01) :108-128
[7]   SPACE-TIME APPROACH TO NON-RELATIVISTIC QUANTUM MECHANICS [J].
FEYNMAN, RP .
REVIEWS OF MODERN PHYSICS, 1948, 20 (02) :367-387
[8]   MACROSCOPIC MAGNETIZATION TUNNELING AND COHERENCE - CALCULATION OF TUNNELING-RATE PREFACTORS [J].
GARG, A ;
KIM, GH .
PHYSICAL REVIEW B, 1992, 45 (22) :12921-12929
[9]   Spin coherent-state path integrals and the instanton calculus [J].
Garg, A ;
Kochetov, E ;
Park, KS ;
Stone, M .
JOURNAL OF MATHEMATICAL PHYSICS, 2003, 44 (01) :48-70
[10]   COHERENT AND INCOHERENT STATES OF RADIATION FIELD [J].
GLAUBER, RJ .
PHYSICAL REVIEW, 1963, 131 (06) :2766-+