A semigroup version of the isoperimetric inequality

被引:17
作者
Preunkert, M [1 ]
机构
[1] Univ Tubingen, Math Inst, D-72076 Tubingen, Germany
关键词
heat semigroup; isoperimetric inequality; Caccioppoli sets;
D O I
10.1007/s00233-003-0004-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we extend the heat semigroup version of the isoperimetric inequality in R-n established by M. Ledoux [6]. To this purpose, the notion of the perimeter of a Caccioppoli set introduced by E. De Giorgi [4] yields the appropriate measure theoretical background. In the proofs we use properties of the heat semigroup as well as its explicit integral representation.
引用
收藏
页码:233 / 245
页数:13
相关论文
共 8 条
[1]  
[Anonymous], 1974, ACTA MATH-DJURSHOLM, DOI [DOI 10.1007/BF02392144, 10.1007/BF02392144]
[2]  
Chavel I., 2001, Isoperimetric Inequalities: Differential Geometric and Analytic Perspectives
[3]  
DE GIORGI E, 1953, ATTI ACAD NAZ L SFMN, V14, P390
[4]  
Evans L. C., 2018, Measure Theory and Fine Properties of Functions
[5]  
Giusti E., 1984, MINIMAL SURFACES FUN
[6]  
LEDOUX M, 1994, B SCI MATH, V118, P485
[7]   ISOPERIMETRIC INEQUALITY [J].
OSSERMAN, R .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 84 (06) :1182-1238
[8]  
ZIEMER W, 1989, WEAKLY DIFFERENTIABL