Woven fabric composite material model with material nonlinearity for nonlinear finite element simulation

被引:79
作者
Tabiei, A [1 ]
Jiang, Y [1 ]
机构
[1] Univ Cincinnati, Dept Aerosp Engn & Engn Mech, Cincinnati, OH 45221 USA
关键词
D O I
10.1016/S0020-7683(98)00127-9
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The objective of the current investigation is to develop a simple, yet generalized, model which considers the two-dimensional extent of woven fabric, and to have an interface with nonlinear finite element codes. A micromechanical composite material model for woven fabric with nonlinear stress-strain relations is developed and implemented in ABAQUS for nonlinear finite element structural analysis. Within the model a representative volume cell is assumed. Using the iso-stress and iso-strain assumptions the constitutive equations are averaged along the thickness direction. The cell is then divided into many subcells and an averaging is performed again by assuming uniform stress distribution in each subcell to obtain the effective stress-strain relations of the subcell. The stresses and strains within the subcells are combined to yield the effective stresses and strains in the representative cell. Then this information is passed to the finite element code at each material point of the shell element. In this manner structural analysis of woven composites can be performed. Also, at each load increment global stresses and strains are communicated to the representative cell and subsequently distributed to each subcell. Once stresses and strains are associated to a subcell they can be distributed to each constituent of the subcell i.e. fill, warp, and resin. Consequently micro-failure criteria (MFC) can be defined for each constituent of a subcell and the proper stiffness degradation can be modeled if desired. This material model is suitable for implicit and could be modified for explicit finite element codes to deal with problems such as crashworthiness, impact, and failure analysis under static loads. (C) 1999 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:2757 / 2771
页数:15
相关论文
共 12 条
[1]  
CHAPMAN CD, 1996, AIAA9601520CP, P1774
[2]   NONLINEAR ELASTIC BEHAVIOR OF UNIDIRECTIONAL COMPOSITE LAMINAE [J].
HAHN, HT ;
TSAI, SW .
JOURNAL OF COMPOSITE MATERIALS, 1973, 7 (JAN) :102-118
[3]   ONE-DIMENSIONAL MICROMECHANICAL ANALYSIS OF WOVEN FABRIC COMPOSITES [J].
ISHIKAWA, T ;
CHOU, TW .
AIAA JOURNAL, 1983, 21 (12) :1714-1721
[4]   NON-LINEAR BEHAVIOR OF WOVEN FABRIC COMPOSITES [J].
ISHIKAWA, T ;
CHOU, TW .
JOURNAL OF COMPOSITE MATERIALS, 1983, 17 (05) :399-413
[5]   THERMOELASTIC ANALYSIS OF HYBRID FABRIC COMPOSITES [J].
ISHIKAWA, T ;
CHOU, TW .
JOURNAL OF MATERIALS SCIENCE, 1983, 18 (08) :2260-2268
[6]   ELASTIC BEHAVIOR OF WOVEN HYBRID COMPOSITES [J].
ISHIKAWA, T ;
CHOU, TW .
JOURNAL OF COMPOSITE MATERIALS, 1982, 16 (JAN) :2-19
[7]   ELASTIC BEHAVIOR OF WOVEN FABRIC COMPOSITES .3. LAMINATE DESIGN [J].
NAIK, NK ;
SHEMBEKAR, PS .
JOURNAL OF COMPOSITE MATERIALS, 1992, 26 (17) :2522-2541
[8]   ELASTIC BEHAVIOR OF WOVEN FABRIC COMPOSITES .1. LAMINA ANALYSIS [J].
NAIK, NK ;
SHEMBEKAR, PS .
JOURNAL OF COMPOSITE MATERIALS, 1992, 26 (15) :2196-2225
[9]  
RAHMAN S, 1992, IULUENG922012
[10]  
SHEMBEKAR PS, 1992, J COMPOS MATER, V26, P2126