ON EXPLICIT STABILITY CONDITIONS FOR A LINEAR FRACTIONAL DIFFERENCE SYSTEM

被引:183
作者
Cermak, Jan [1 ]
Gyori, Istvan [2 ]
Nechvatal, Ludek [1 ]
机构
[1] Brno Univ Technol, Inst Math, Tech 2, CZ-61669 Brno, Czech Republic
[2] Univ Veszprem, Dept Math, H-8201 Veszprem, Hungary
关键词
fractional-order difference system; Caputo difference operator; Riemann-Liouville difference operator; asymptotic stability; EQUATIONS; CALCULUS; ORDER;
D O I
10.1515/fca-2015-0040
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper describes the stability area for the difference system (Delta alpha y)(n + 1 - alpha) = Ay(n), n= 0, 1, ... , with the Caputo forward difference operator Delta alpha of a real order alpha epsilon (0, 1) and a real constant matrix A. Contrary to the existing result on this topic, our stability conditions are fully explicit and involve the decay rate of the solutions. Some comparisons with a difference system of the Riemann-Liouville type are discussed as well, including related consequences and illustrating examples.
引用
收藏
页码:651 / 672
页数:22
相关论文
共 24 条
[1]   On Riemann and Caputo fractional differences [J].
Abdeljawad, Thabet .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (03) :1602-1611
[2]   On the asymptotic stability of linear system of fractional-order difference equations [J].
Abu-Saris, Raghib ;
Al-Mdallal, Qasem .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2013, 16 (03) :613-629
[3]  
Apostol T.M., 1974, Mathematical Analysis
[4]   On exact convergence rates for solutions of linear systems of Volterra difference equations [J].
Applelby, John A. D. ;
Gyori, Istvan ;
Reynolds, David W. .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2006, 12 (12) :1257-1275
[5]  
Atici F. M., 2007, INT J DIFFERENCE EQU, V2, P165
[6]   LINEAR SYSTEMS OF FRACTIONAL NABLA DIFFERENCE EQUATIONS [J].
Atici, Ferhan M. ;
Eloe, Paul W. .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2011, 41 (02) :353-370
[7]   Stability regions for linear fractional differential systems and their discretizations [J].
Cermak, Jan ;
Kisela, Tomas ;
Nechvatal, Ludek .
APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (12) :7012-7022
[8]   ON (q, h) - ANALOGUE OF FRACTIONAL CALCULUS [J].
Cermak, Jan ;
Nechvatal, Ludek .
JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2010, 17 (01) :51-68
[9]  
Chen F., 2011, J QUALIT THEORY DIFF, V2011
[10]  
Elaydi Saber, 2005, An Introduction to Difference Equations, Vthird