Half of a Riordan array and restricted lattice paths

被引:21
|
作者
Yang, Sheng-Liang [1 ]
Dong, Yan-Ni [1 ]
Yang, Lin [1 ]
Yin, Juan [1 ]
机构
[1] Lanzhou Univ Technol, Dept Appl Math, Lanzhou 730050, Gansu, Peoples R China
基金
中国国家自然科学基金;
关键词
Riordan array; Lukasiewicz path; Central coefficients; Catalan numbers; Generating function; CATALAN NUMBERS; MOTZKIN; IDENTITIES; TRIANGLES;
D O I
10.1016/j.laa.2017.09.027
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For an infinite lower triangular matrix G = (g(n,k))(n,k >= 0), we define the half of G to be the infinite lower triangular matrix H = (h(n,k))(n,k >= 0) such that h(n,k) = g(2n-k,n) for all n >= k >= 0. In this paper, we will show that if G = (g(n,k))(n,k >= 0) is a Riordan array, then its half H = (h(n,k))(n,k >= 0) is also a Riordan array, and we obtain new combinatorial interpretations for some Riordan arrays in terms of weighted lattice paths. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 50 条