Doubling metric Diophantine approximation in the dynamical system of continued fractions

被引:0
作者
Huang, Lingling [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Hubei, Peoples R China
关键词
Continued fraction system; Metric theory; Hausdorff dimension; DIMENSION; SETS;
D O I
10.1016/j.chaos.2017.11.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is concerned with the Diophantine properties of the orbits of real numbers in continued fraction system under the doubling metric. More precisely, let phi be a positive function defined on N. We determine the Lebesgue measure and Hausdorff dimension of the set E(phi) = {(x, y) is an element of [0, 1) x [0, 1) : vertical bar T-n x - y vertical bar < phi (n) for i.m.n}, where T is the Gauss map and "i.m." stands for " infinitely many". (c) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:72 / 75
页数:4
相关论文
共 11 条
[1]   A note on metric inhomogeneous Diophantine approximation [J].
Dodson, MM .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1997, 62 :175-185
[2]  
Falconer K., 2004, FRACTAL GEOMETRY MAT
[3]  
Feng DJ, 1997, MATHEMATIKA, V44, P54
[4]   A NOTE ON INHOMOGENEOUS DIOPHANTINE APPROXIMATION IN BETA-DYNAMICAL SYSTEM [J].
Ge, Yuehua ;
Lu, Fan .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2015, 91 (01) :34-40
[5]   THE ERGODIC-THEORY OF SHRINKING TARGETS [J].
HILL, R ;
VELANI, SL .
INVENTIONES MATHEMATICAE, 1995, 119 (01) :175-198
[6]  
Khintchine Ya, 1964, Continued Fractions
[7]   The shrinking target problem in the dynamical system of continued fractions [J].
Li, Bing ;
Wang, Bao-Wei ;
Wu, Jun ;
Xu, Jian .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2014, 108 :159-186
[8]  
Luczak T, 1997, MATHEMATIKA, V44, P50
[9]  
Mauldin RD, 1996, P LOND MATH SOC, V73, P105
[10]   SOME METRICAL THEOREMS IN NUMBER THEORY [J].
PHILIPP, W .
PACIFIC JOURNAL OF MATHEMATICS, 1967, 20 (01) :109-&