Effects of partial replacement of silica with surface modified nanocrystalline cellulose on properties of natural rubber nanocomposites

被引:79
作者
Xu, S. H. [1 ]
Gu, J. [1 ]
Luo, Y. F. [1 ]
Jia, D. M. [1 ]
机构
[1] S China Univ Technol, Coll Mat Sci & Engn, Guangzhou 510640, Peoples R China
基金
中国国家自然科学基金;
关键词
rubber; nanocrystalline cellulose; silica; reinforcement; KH550; MECHANICAL-PROPERTIES; WHISKERS; POLYPROPYLENE; NANOFIBRES; STARCH;
D O I
10.3144/expresspolymlett.2012.3
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Nanocrystalline cellulose was modified by 3-aminopropyl-triethoxysilane (KH550). The modified nanocrystalline cellulose (MNCC) was further investigated to partially replace silica in natural rubber (NR) composites via coagulation. NR/MNCC/silica and NR/nanocrystalline cellulose (NCC)/silica nanocomposites were prepared. Through the comparison of vulcanization characteristics, processing properties of compounds and mechanical properties, compression fatigue properties, dynamic mechanical performance of NR/MNCC/silica and NR/NCC/silica nanocomposites, MNCC was proved to be more efficient than NCC. MNCC could activate the vulcanization process, suppress Payne effect, increase 300% modulus, tear strength and hardness, and reduce the heat build-up and compression set. Moreover, fine MNCC dispersion and strong interfacial interaction were achieved in NR/MNCC/silica nanocomposites. The observed reinforcement effects were evaluated based on the results of apparent crosslinking density (V-r), thermo-gravimetric (TG) and scanning electron microscopic (SEM) analyses of NR/MNCC/silica in comparison with NR/NCC/silica nanocomposites.
引用
收藏
页码:14 / 25
页数:12
相关论文
共 36 条
[1]   Using a Silanized Silica Nanofiller to Reduce Excessive Amount of Rubber Curatives in Styrene-Butadiene Rubber [J].
Ansarifar, Ali ;
Wang, Li ;
Ellis, Robert J. ;
Haile-Meskel, Yared .
JOURNAL OF APPLIED POLYMER SCIENCE, 2011, 119 (02) :922-928
[2]   Partial replacement of silica with microcrystalline cellulose in rubber composites [J].
Bai, Wen ;
Li, Kaichang .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2009, 40 (10) :1597-1605
[3]   Investigation on the effect of cellulosic nanoparticles' morphology on the properties of natural rubber based nanocomposites [J].
Bendahou, Abdelkader ;
Kaddami, Hamid ;
Dufresne, Alain .
EUROPEAN POLYMER JOURNAL, 2010, 46 (04) :609-620
[4]   Gas-Phase Surface Esterification of Cellulose Microfibrils and Whiskers [J].
Berlioz, Sophie ;
Molina-Boisseau, Sonia ;
Nishiyama, Yoshiharu ;
Heux, Laurent .
BIOMACROMOLECULES, 2009, 10 (08) :2144-2151
[5]   Reinforcement of natural rubber: use of in situ generated silicas and nanofibres of sepiolite [J].
Bokobza, L ;
Chauvin, JP .
POLYMER, 2005, 46 (12) :4144-4151
[6]   Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis [J].
Bondeson, D ;
Mathew, A ;
Oksman, K .
CELLULOSE, 2006, 13 (02) :171-180
[7]   Single-Step Method for the Isolation and Surface Functionalization of Cellulosic Nanowhiskers [J].
Braun, Birgit ;
Dorgan, John R. .
BIOMACROMOLECULES, 2009, 10 (02) :334-341
[8]   New nanocomposite materials reinforced with flax cellulose nanocrystals in waterborne polyurethane [J].
Cao, Xiaodong ;
Dong, Hua ;
Li, Chang Ming .
BIOMACROMOLECULES, 2007, 8 (03) :899-904
[9]   Surface modification of silica: 1. Thermodynamic aspects and effect on elastomer reinforcement [J].
Castellano, M ;
Conzatti, L ;
Costa, G ;
Falqui, L ;
Turturro, A ;
Valenti, B ;
Negroni, F .
POLYMER, 2005, 46 (03) :695-703
[10]   Fabrication and characterization of novel macroporous cellulose-alginate hydrogels [J].
Chang, Chunyu ;
Duan, Bo ;
Zhang, Lina .
POLYMER, 2009, 50 (23) :5467-5473