Erythrocyte-cancer hybrid membrane-camouflaged melanin nanoparticles for enhancing photothermal therapy efficacy in tumors

被引:255
作者
Jiang, Qin [1 ,2 ]
Liu, Yao [3 ,4 ]
Guo, Ranran [1 ,2 ]
Yao, Xianxian [1 ,2 ]
Sung, Seunghyun [5 ]
Pang, Zhiqing [3 ,4 ]
Yang, Wuli [1 ,2 ]
机构
[1] Fudan Univ, State Key Lab Mol Engn Polymers, Shanghai 200433, Peoples R China
[2] Fudan Univ, Dept Macromol Sci, Shanghai 200433, Peoples R China
[3] Fudan Univ, Key Lab Smart Drug Delivery, Minist Educ, Shanghai 201203, Peoples R China
[4] Fudan Univ, PLA, Dept Pharmaceut, Sch Pharm, Shanghai 201203, Peoples R China
[5] Hankuk Univ Foreign Studies, Dept Chem, Seoul Campus 107, Seoul 02450, South Korea
基金
美国国家科学基金会; 国家重点研发计划;
关键词
Hybrid cell membrane; Melanin nanoparticle; Long circulation; Homotypic targeting; Photothermal therapy; BIOMIMETIC NANOPARTICLES; GOLD NANOPARTICLES; RBC MEMBRANES; DELIVERY; SIZE; SELF; NANOMATERIALS; NANOCARRIERS; ACCUMULATION; CIRCULATION;
D O I
10.1016/j.biomaterials.2018.11.021
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Cell membrane coating has emerged as an intriguing biomimetic strategy to endow nanomaterials with functions and properties inherent to source cells for various biomedical applications. Hybrid membrane of different types of cells could be coated onto nanoparticle surface to achieve additional functions. Herein, we fused red blood cell (RBC) membrane together with MCF-7 cell membrane and fabricated an erythrocyte-cancer (RBC-M) hybrid membrane-camouflaged melanin nanoparticle (Melanin@RBC-M) platform for enhancing therapeutic efficacy of photothermal therapy (PTT). The fused RBC-M hybrid membrane vesicles retained both RBC and MCF-7 cell membrane proteins and the resultant Melanin@RBC-M exhibited prolonged blood circulation and homotypic targeting to source MCF-7 cells simultaneously. Interestingly, increasing MCF-7 membrane components in RBC-M significantly enhanced the homotypic targeting function of Melanin@RBC-M while increasing RBC membrane components in RBC-M effectively reduced the cellular uptake of Melanin@RBC-M by macrophages and improved their circulation time in the blood. After intravenous injection into MCF-7 tumor-bearing athymic nude mice, Melanin@RBC-M with 1:1 membrane protein weight ratio of RBC to MCF-7 exhibited significantly higher tumor accumulation and better PTT efficacy compared with other Melanin@RBC-M with different membrane protein weight ratios as well as pristine melanin nanoparticles, due to the optimal balance between prolonged blood circulation and homotypic targeting. In addition, in vitro photoacoustic results revealed that Melanin@RBC-M had a photoacoustic signal enhancement with the increase of nanoparticle size (64 -> 148 nm) and the photo-acoustic amplitudes increased linearly with nanoparticle concentration at the excitation wavelength ranged from 680 nm to 800 nm, which could be used for quantification of Melanin@RBC-M in vivo. Looking forward, coating hybrid membrane onto nanoparticles could add flexibility and controllability in enhancing nanoparticles functionality and offer new opportunities for biomedical applications.
引用
收藏
页码:292 / 308
页数:17
相关论文
共 65 条
[1]   Nanoparticles for detection and diagnosis [J].
Agasti, Sarit S. ;
Rana, Subinoy ;
Park, Myoung-Hwan ;
Kim, Chae Kyu ;
You, Chang-Cheng ;
Rotello, Vincent M. .
ADVANCED DRUG DELIVERY REVIEWS, 2010, 62 (03) :316-328
[2]   Exploiting shape, cellular-hitchhiking and antibodies to target nanoparticles to lung endothelium: Synergy between physical, chemical and biological approaches [J].
Anselmo, Aaron C. ;
Kumar, Sunny ;
Gupta, Vivek ;
Pearce, Austin M. ;
Ragusa, Analisa ;
Muzykantov, Vladimir ;
Mitragotri, Samir .
BIOMATERIALS, 2015, 68 :1-8
[3]   In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles [J].
Arami, Hamed ;
Khandhar, Amit ;
Liggitt, Denny ;
Krishnan, Kannan M. .
CHEMICAL SOCIETY REVIEWS, 2015, 44 (23) :8576-8607
[4]   The Interaction Between Signal Regulatory Protein Alpha (SIRPα) and CD47: Structure, Function, and Therapeutic Target [J].
Barclay, A. Neil ;
van den Berg, Timo K. .
ANNUAL REVIEW OF IMMUNOLOGY, VOL 32, 2014, 32 :25-50
[5]   Photoacoustic signal amplification through plasmonic nanoparticle aggregation [J].
Bayer, Carolyn L. ;
Nam, Seung Yun ;
Chen, Yun-Sheng ;
Emelianov, Stanislav Y. .
JOURNAL OF BIOMEDICAL OPTICS, 2013, 18 (01)
[6]   Red blood cell-hitchhiking boosts delivery of nanocarriers to chosen organs by orders of magnitude [J].
Brenner, Jacob S. ;
Pan, Daniel C. ;
Myerson, Jacob W. ;
Marcos-Contreras, Oscar A. ;
Villa, Carlos H. ;
Patel, Priyal ;
Hekierski, Hugh ;
Chatterjee, Shampa ;
Tao, Jian-Qin ;
Parhiz, Hamideh ;
Bhamidipati, Kartik ;
Uhler, Thomas G. ;
Hood, Elizabeth D. ;
Kiseleva, Raisa Yu. ;
Shuvaev, Vladimir S. ;
Shuvaeva, Tea ;
Khoshnejad, Makan ;
Johnston, Ian ;
Gregory, Jason V. ;
Lahann, Joerg ;
Wang, Tao ;
Cantu, Edward ;
Armstead, William M. ;
Mitragotri, Samir ;
Muzykantov, Vladimir .
NATURE COMMUNICATIONS, 2018, 9
[7]   Cancer Cell Membrane-Biomimetic Nanoparticles for Homologous-Targeting Dual-Modal Imaging and Photothermal Therapy [J].
Chen, Ze ;
Zhao, Pengfei ;
Luo, Zhenyu ;
Zheng, Mingbin ;
Tian, Hao ;
Gong, Ping ;
Gao, Guanhui ;
Pan, Hong ;
Liu, Lanlan ;
Ma, Aiqing ;
Cui, Haodong ;
Ma, Yifan ;
Cai, Lintao .
ACS NANO, 2016, 10 (11) :10049-10057
[8]   Functional Nanomaterials for Phototherapies of Cancer [J].
Cheng, Liang ;
Wang, Chao ;
Feng, Liangzhu ;
Yang, Kai ;
Liu, Zhuang .
CHEMICAL REVIEWS, 2014, 114 (21) :10869-10939
[9]   Melanin nanoparticles derived from a homology of medicine and food for sentinel lymph node mapping and photothermal in vivo cancer therapy [J].
Chu, Maoquan ;
Hai, Wangxi ;
Zhang, Zheyu ;
Wo, Fangjie ;
Wu, Qiang ;
Zhang, Zefei ;
Shao, Yuxiang ;
Zhang, Ding ;
Jin, Lu ;
Shi, Donglu .
BIOMATERIALS, 2016, 91 :182-199
[10]   Clearance of pathological antibodies using biomimetic nanoparticles [J].
Copp, Jonathan A. ;
Fang, Ronnie H. ;
Luk, Brian T. ;
Hu, Che-Ming J. ;
Gao, Weiwei ;
Zhang, Kang ;
Zhang, Liangfang .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (37) :13481-13486