Regulation of star formation by large-scale gravitoturbulence

被引:11
|
作者
Nusser, Adi [1 ,2 ]
Silk, Joseph [3 ,4 ,5 ,6 ]
机构
[1] Israel Inst Technol Technion, Dept Phys, IL-32000 Haifa, Israel
[2] Israel Inst Technol Technion, Asher Space Res Inst, IL-32000 Haifa, Israel
[3] UPMC Univ Paris 06, Sorbonne Univ, Inst Astrophys Paris, F-75014 Paris, France
[4] CNRS, UMR 7095, F-75014 Paris, France
[5] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA
[6] Univ Oxford, Beecroft Inst Particle Astrophys & Cosmol, Dept Phys, Oxford OX1 3RH, England
关键词
stars: formation; galaxies: disc; galaxies: formation; SUPERNOVA FEEDBACK; GALACTIC DISCS; GRAVITATIONAL-INSTABILITY; INTERSTELLAR TURBULENCE; FORMATION EFFICIENCY; STABILITY PARAMETER; SPIRAL GALAXIES; MOLECULAR GAS; FORMATION LAW; SIMULATIONS;
D O I
10.1093/mnras/stab3121
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A simple model for star formation based on supernova (SN) feedback and gravitational heating via the collapse of perturbations in gravitationally unstable discs reproduces the Schmidt-Kennicutt relation between the star formation rate (SFR) per unit area, Sigma(SFR), and the gas surface density, Sigma(g), remarkably well. The gas velocity dispersion, sigma(g), is derived self-consistently in conjunction with Sigma(SFR) and is found to match the observations. Gravitational instability triggers 'gravitoturbulence' at the scale of the least stable perturbation mode, boosting sigma(g) at Sigma(g) greater than or similar to Sigma(thr)(g) = 50M(circle dot) pc(-2), and contributing to the pressure needed to carry the disc weight vertically. Sigma(SFR) is reduced to the observed level at Sigma(g) greater than or similar to Sigma(thr)(g), whereas at lower surface densities, SN feedback is the prevailing energy source. Our proposed star formation recipes require efficiencies of the order of 1 per cent, and the Toomre parameter, Q, for the joint gaseous and stellar disc is predicted to be close to the critical value for marginal stability for Sigma(g) less than or similar to Sigma(thr)(g), spreading to lower values and larger gas velocity dispersion at higher Sigma(g).
引用
收藏
页码:2979 / 2993
页数:15
相关论文
共 50 条
  • [1] LARGE-SCALE DYNAMICS AND STAR FORMATION
    COMBES, F
    ANNALES DE PHYSIQUE, 1991, 16 (03) : 25 - 32
  • [2] Large-scale star formation in galaxies
    Efremov, YN
    Chernin, AD
    PHYSICS-USPEKHI, 2003, 46 (01) : 1 - 20
  • [3] Large-scale star formation in galaxies
    Efremov, Yu.N.
    Chernin, A.D.
    Uspekhi Fizicheskikh Nauk, 2003, 173 (01): : 3 - 27
  • [4] Large-scale star formation in Auriga region
    Pandey, A. K.
    Sharma, Saurabh
    Kobayashi, N.
    Sarugaku, Y.
    Ogura, K.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 492 (02) : 2446 - 2467
  • [5] Star formation associated with a large-scale infrared bubble
    Xu, Jin-Long
    Ju, Bing-Gang
    ASTRONOMY & ASTROPHYSICS, 2014, 569
  • [6] Large-scale modulation of star formation in void walls
    Ceccarelli, L.
    Padilla, N.
    Lambas, D. G.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2008, 390 (01) : L9 - L13
  • [7] Large-scale gravitational instability and star formation in the Large Magellanic Cloud
    Yang, Chao-Chin
    Gruendl, Robert A.
    Chu, You-Hua
    ASTROPHYSICAL JOURNAL, 2007, 671 (01): : 374 - 379
  • [8] Description of star formation in the context of cosmological large-scale structure formation
    Hoeft, M
    Mücket, JP
    Heide, P
    NUCLEAR PHYSICS A, 2001, 688 (1-2) : 390C - 392C
  • [9] LARGE-SCALE STAR FORMATION - DENSITY WAVES, SUPERASSOCIATIONS AND PROPAGATION
    ELMEGREEN, BG
    IAU SYMPOSIA, 1987, (115): : 457 - 481
  • [10] Star formation efficiency across large-scale galactic environments
    Ghodsi, Laya
    Man, Allison W. S.
    Donevski, Darko
    Dave, Romeel
    Lim, Seunghwan
    Lovell, Christopher C.
    Narayanan, Desika
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2024, 528 (03) : 4393 - 4408