Photoacoustic spectroscopy for gas sensing: A comparison between piezoelectric and interferometric readout in custom quartz tuning forks

被引:27
作者
Dello Russo, Stefano [1 ,2 ]
Zhou, Sheng [3 ]
Zifarelli, Andrea [1 ,2 ]
Patimisco, Pietro [1 ,2 ]
Sampaolo, Angelo [1 ,2 ]
Giglio, Marilena [1 ,2 ]
Iannuzzi, Davide [3 ]
Spagnolo, Vincenzo [1 ,2 ]
机构
[1] Univ & Politecn Bari, Dipartimento Interateneo Fis, PolySense Lab, Via Amendola 173, Bari, Italy
[2] Shanxi Univ, Inst Laser Spect, State Key Lab Quantum Opt & Quantum Opt Devices, Taiyuan 030006, Shanxi, Peoples R China
[3] Vrije Univ Amsterdam, Dept Phys & Astron, Amsterdam, Netherlands
基金
欧洲研究理事会;
关键词
Photoacoustic spectroscopy; Tuning fork; Piezoelectricity; Interferometry; Gas sensing;
D O I
10.1016/j.pacs.2019.100155
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
We report on a comparison between piezoelectric and interferometric readouts of vibrations in quartz tuning forks (QTFs) when acting as sound wave transducers in a quartz-enhanced photoacoustic setup (QEPAS) for trace gas detection. A theoretical model relating the prong vibration amplitude with the QTF prong sizes and electrical resistance is proposed. To compare interferometric and piezoelectric readouts, two QTFs have been selected; a tuning fork with rectangular-shape of the prongs, having a resonance frequency of 3.4 kHz and a quality-factor of 4,000, and a QTF with prong having a T-shape characterized by a resonance frequency of 12.4 kHz with a quality-factor of 15,000. Comparison between the interferometric and piezoelectric readouts were performed by using both QTFs in a QEPAS sensor setup for water vapor detection. We demonstrated that the QTF geometry can be properly designed to enhance the signal from a specific readout mode.
引用
收藏
页数:7
相关论文
共 23 条
[1]   Acoustic Coupling between Resonator Tubes in Quartz-Enhanced Photoacoustic Spectrophones Employing a Large Prong Spacing Tuning Fork [J].
Dello Russo, Stefano ;
Giglio, Marilena ;
Sampaolo, Angelo ;
Patimisco, Pietro ;
Menduni, Giansergio ;
Wu, Hongpeng ;
Dong, Lei ;
Passaro, Vittorio M. N. ;
Spagnolo, Vincenzo .
SENSORS, 2019, 19 (19)
[2]   QEPAS spectrophones: design, optimization, and performance [J].
Dong, L. ;
Kosterev, A. A. ;
Thomazy, D. ;
Tittel, F. K. .
APPLIED PHYSICS B-LASERS AND OPTICS, 2010, 100 (03) :627-635
[3]   Photoacoustic Techniques for Trace Gas Sensing Based on Semiconductor Laser Sources [J].
Elia, Angela ;
Lugara, Pietro Mario ;
Di Franco, Cinzia ;
Spagnolo, Vincenzo .
SENSORS, 2009, 9 (12) :9616-9628
[4]   Optical gas sensing: a review [J].
Hodgkinson, Jane ;
Tatam, Ralph P. .
MEASUREMENT SCIENCE AND TECHNOLOGY, 2013, 24 (01)
[5]  
Klein C.A., 1980, P BOULDER LASER DAMA, P117
[6]   Temperature effects in tuning fork enhanced interferometric photoacoustic spectroscopy [J].
Koehring, M. ;
Boettger, S. ;
Willer, U. ;
Schade, W. .
OPTICS EXPRESS, 2013, 21 (18) :20911-20922
[7]   Fiber-Coupled Ozone Sensor Based on Tuning Fork-Enhanced Interferometric Photoacoustic Spectroscopy [J].
Koehring, M. ;
Willer, U. ;
Boettger, S. ;
Pohlkoetter, A. ;
Schade, W. .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2012, 18 (05) :1566-1572
[8]   Tuning fork enhanced interferometric photoacoustic spectroscopy: a new method for trace gas analysis [J].
Koehring, M. ;
Pohlkoetter, A. ;
Willer, U. ;
Angelmahr, M. ;
Schade, W. .
APPLIED PHYSICS B-LASERS AND OPTICS, 2011, 102 (01) :133-139
[9]   Applications of quartz tuning forks in spectroscopic gas sensing [J].
Kosterev, AA ;
Tittel, FK ;
Serebryakov, DV ;
Malinovsky, AL ;
Morozov, IV .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2005, 76 (04)
[10]   Quartz-enhanced photoacoustic spectroscopy [J].
Kosterev, AA ;
Bakhirkin, YA ;
Curl, RF ;
Tittel, FK .
OPTICS LETTERS, 2002, 27 (21) :1902-1904