Excited Brownian Motions

被引:0
|
作者
Raimond, Olivier [1 ]
Schapira, Bruno [2 ]
机构
[1] Univ Paris Ouest Nanterre Def, Lab ModalX, F-92000 Nanterre, France
[2] Univ Paris 11, Dept Math, F-91405 Orsay, France
关键词
Reinforced process; Excited process; Self-interacting process; Recurrence; Law of large numbers; RANDOM-WALKS; CONVERGENCE; DIFFUSIONS; TRANSIENCE; RECURRENCE;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study a natural continuous time version of excited random walks, introduced by Norris, Rogers and Williams about twenty years ago. We obtain a necessary and sufficient condition for recurrence and for positive speed. Condition under which a central limit theorem holds is also given. These results are analogous to the ones obtained for excited (or cookie) random walks.
引用
收藏
页码:19 / 41
页数:23
相关论文
共 50 条
  • [31] On squared fractional Brownian motions
    Eisenbaum, N
    Tudor, CA
    SEMINAIRE DE PROBABILITIES XXXVIII, 2005, 1857 : 282 - 289
  • [32] ON THE SPECTRUM OF FRACTIONAL BROWNIAN MOTIONS
    FLANDRIN, P
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1989, 35 (01) : 197 - 199
  • [33] Going through the Brownian motions
    Choi, CQ
    SCIENTIFIC AMERICAN, 2005, 293 (06) : 36 - 36
  • [34] The open quantum Brownian motions
    Bauer, Michel
    Bernard, Denis
    Tilloy, Antoine
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2014,
  • [35] FINITARY ISOMORPHISMS OF BROWNIAN MOTIONS
    Kosloff, Zemer
    Soo, Terry
    ANNALS OF PROBABILITY, 2020, 48 (04): : 1966 - 1979
  • [36] Quantum Mechanics and Brownian Motions
    Mikio Namiki
    Acta Applicandae Mathematica, 2000, 63 : 275 - 282
  • [37] Bouncing Skew Brownian Motions
    Arnaud Gloter
    Miguel Martinez
    Journal of Theoretical Probability, 2018, 31 : 319 - 363
  • [38] SERIES EXPANSIONS OF FRACTIONAL BROWNIAN MOTIONS AND STRONG LOCAL NONDETERMINISM OF BIFRACTIONAL BROWNIAN MOTIONS ON BALLS AND SPHERES
    Lu, T.
    Ma, C.
    Wang, F.
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2023, 68 (01) : 88 - 110
  • [39] Rotational Motions Excited by Vertical Harmonic Motions
    Tadokoro Chiharu
    Kadowaki Kei
    Mori Hiroki
    Nagamine Takuo
    Transactions of Nanjing University of Aeronautics and Astronautics, 2018, 35 (01) : 51 - 57
  • [40] On the Almost Intersections of Transient Brownian Motions
    Sergio Albeverio
    Maria Simonetta Bernabei
    Xian Yin Zhou
    Acta Applicandae Mathematica, 2004, 84 : 1 - 28