Excited Brownian Motions

被引:0
|
作者
Raimond, Olivier [1 ]
Schapira, Bruno [2 ]
机构
[1] Univ Paris Ouest Nanterre Def, Lab ModalX, F-92000 Nanterre, France
[2] Univ Paris 11, Dept Math, F-91405 Orsay, France
关键词
Reinforced process; Excited process; Self-interacting process; Recurrence; Law of large numbers; RANDOM-WALKS; CONVERGENCE; DIFFUSIONS; TRANSIENCE; RECURRENCE;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study a natural continuous time version of excited random walks, introduced by Norris, Rogers and Williams about twenty years ago. We obtain a necessary and sufficient condition for recurrence and for positive speed. Condition under which a central limit theorem holds is also given. These results are analogous to the ones obtained for excited (or cookie) random walks.
引用
收藏
页码:19 / 41
页数:23
相关论文
共 50 条
  • [21] Coalescence of skew Brownian motions
    Barlow, M
    Burdzy, K
    Kaspi, H
    Mandelbaum, A
    SEMINAIRE DE PROBABILITES XXXV, 2001, 1755 : 202 - 205
  • [22] Fluctuations of Brownian motions on GLN
    Cebron, Guillaume
    Kemp, Todd
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2022, 58 (01): : 524 - 547
  • [23] BROWNIAN MOTIONS ON THE HOMEOMORPHISMS OF THE PLANE
    HARRIS, TE
    ANNALS OF PROBABILITY, 1981, 9 (02): : 232 - 254
  • [24] Brownian motions on metric graphs
    Kostrykin, Vadim
    Potthoff, Juergen
    Schrader, Robert
    JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (09)
  • [25] SPHERES, CUBES, AND BROWNIAN MOTIONS
    ADLER, RJ
    ADVANCES IN APPLIED PROBABILITY, 1979, 11 (02) : 289 - 289
  • [26] ON BOUNCING GEOMETRIC BROWNIAN MOTIONS
    Liu, Xin
    Kulkarni, Vidyadhar G.
    Gong, Qi
    PROBABILITY IN THE ENGINEERING AND INFORMATIONAL SCIENCES, 2019, 33 (04) : 591 - 617
  • [27] Are Fractional Brownian Motions Predictable?
    Jakubowski, Adam
    SEMINAR ON STOCHASTIC ANALYSIS, RANDOM FIELDS AND APPLICATIONS VI, 2011, 63 : 159 - 165
  • [28] Quantum mechanics and Brownian motions
    Namiki, M
    ACTA APPLICANDAE MATHEMATICAE, 2000, 63 (1-3) : 275 - 282
  • [29] BROWNIAN MOTIONS AND QUANTUM MECHANICS
    FAVELLA, LF
    ANNALES DE L INSTITUT HENRI POINCARE SECTION A PHYSIQUE THEORIQUE, 1967, 7 (01): : 77 - +
  • [30] CONCRETE REPRESENTATION OF BROWNIAN MOTIONS
    KAKUTANI, S
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1949, 55 (11) : 1058 - 1059