Excited Brownian Motions

被引:0
|
作者
Raimond, Olivier [1 ]
Schapira, Bruno [2 ]
机构
[1] Univ Paris Ouest Nanterre Def, Lab ModalX, F-92000 Nanterre, France
[2] Univ Paris 11, Dept Math, F-91405 Orsay, France
关键词
Reinforced process; Excited process; Self-interacting process; Recurrence; Law of large numbers; RANDOM-WALKS; CONVERGENCE; DIFFUSIONS; TRANSIENCE; RECURRENCE;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study a natural continuous time version of excited random walks, introduced by Norris, Rogers and Williams about twenty years ago. We obtain a necessary and sufficient condition for recurrence and for positive speed. Condition under which a central limit theorem holds is also given. These results are analogous to the ones obtained for excited (or cookie) random walks.
引用
收藏
页码:19 / 41
页数:23
相关论文
共 50 条
  • [1] Excited Brownian motions as limits of excited random walks
    Raimond, Olivier
    Schapira, Bruno
    PROBABILITY THEORY AND RELATED FIELDS, 2012, 154 (3-4) : 875 - 909
  • [2] Excited Brownian motions as limits of excited random walks
    Olivier Raimond
    Bruno Schapira
    Probability Theory and Related Fields, 2012, 154 : 875 - 909
  • [3] On fake Brownian motions
    Oleszlciewicz, Krzysztof
    STATISTICS & PROBABILITY LETTERS, 2008, 78 (11) : 1251 - 1254
  • [4] Intersections of Brownian motions
    Khoshnevisan, D
    EXPOSITIONES MATHEMATICAE, 2003, 21 (02) : 97 - 114
  • [5] Perturbed Brownian motions
    Perman, M
    Werner, W
    PROBABILITY THEORY AND RELATED FIELDS, 1997, 108 (03) : 357 - 383
  • [6] Maximal Brownian motions
    Brossard, Jean
    Emery, Michel
    Leuridan, Christophe
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2009, 45 (03): : 876 - 886
  • [7] ON ISOTROPIC BROWNIAN MOTIONS
    LEJAN, Y
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1985, 70 (04): : 609 - 620
  • [8] FRACTIONAL BROWNIAN MOTIONS
    Fulinski, Andrzej
    ACTA PHYSICA POLONICA B, 2020, 51 (05): : 1097 - 1129
  • [9] Perturbed Brownian motions
    Mihael Perman
    Wendelin Werner
    Probability Theory and Related Fields, 1997, 108 : 357 - 383
  • [10] CONFLUENT BROWNIAN MOTIONS
    GEMAN, D
    ADVANCES IN APPLIED PROBABILITY, 1980, 12 (02) : 306 - 306